@ CERN Program Library Long Writeup D506

WATNIONT

Function Minimization and Error Analysis

Reference Manual

Version 94.1

F. James

Computing and Networks Division

CERN Geneva, Switzerland

Copyright Notice

MINUIT — Function Minimization and Error Analysis
CERN Program Library entrip506
(© Copyright CERN, Geneva 1994-1998

Copyright and any other appropriate legal protection os¢heomputer programs and associated
documentation reserved in all countries of the world.

These programs or documentation may not be reproduced byatiod without prior written con-
sent of the Director-General of CERN or his delegate.

x4

Permission for the usage of any programs described herainaiged apriori to those scientifi
institutes associated with the CERN experimental programwith whom CERN has concluded a
scientific collaboration agreement.

Requests for information should be addressed to:

CERN Program Library Office
CERN-IT Division

CH-1211 Geneva 23
Switzerland

Tel. +41 22 767 4951

Fax. +41 22 767 8630
Internet: cernlib@cern.ch

Trademark notice: All trademarks appearing in this guide are acknowledged as such.

Contact Person lan McLaren /IT (Ian.Mclaren®@cern.ch)

Cocumentation consultant Michel Goossens /CN (goossens@cern.ch)

Edition — August 1998

Foreword
What Minuit is intended to do.

Minuit is conceived as a tool to find the minimum value of a riap#trameter function and analyze the
shape of the function around the minimum. The principal igpfibn is foreseen for statistical analysis,
working on chisquare or log-likelihood functions, to cortgthe best-fit parameter values and uncertain-
ties, including correlations between the parameters. dsjgecially suited to handle difficult problems,
including those which may require guidance in order to fireddbrrect solution.

What Minuit is not intended to do.

Although Minuit will of course solve easy problems fastesrilcomplicated ones, it is not intended for
the repeated solution of identically parametrized prolslésuch as track fitting in a detector) where a
specialized program will in general be much more efficient.

Further remarks.

In this manual examples arednotype face and strings to be input by the user atelerlined. In

the index the page where a routine is defined isatd, page numbers where a routine is referenced are
in normal type. In the description of the routines &llowing the name of a parameter indicates that

this is anoutput parameter. If another precedes a parameter in the calling sequence, the parameter
question is both amput andoutput parameter.

This document has been produced us#igX [1] with the cernman style option, developed at CERN.
A compressed PostScript fileinuit . ps.gz, containing a complete printable version of this manual,
can be obtained from any CERN machine by anonymous ftp asifel(commands to be typed by the
user are underlined):

ftp asisOl.cern.ch

Trying 128.141.201.136...

Connected to asisOl.cermn.ch.

220 asisO1 FTP server (Version 6.10 ...) ready.
Name (asisOl:username): anonymous

Password: your_mailaddress

230 Guest login ok, access restrictions apply.
ftp> cd cernlib/doc/ps.dir

ftp> get minuit.ps

ftp> quit

Table of Contents

1 Minuit Basic Concepts

1.1 The Organization of Minuit. e

1.2 Internal and External Parameters. e
1.2.1 The transformation for parameters with limits. Ce

1.3 MinuitStrategy. e e

1.4 Parameter Errors. e e e
1.4.1 FCN Normalization and the ERRor definition.
1.42 TheErrorMatrix. e
1.4.3 MINOS Errors. e e e e
144 ContourPlotting e

2 Minuit Installation.
2.1 MinuitReleases. e e
2.2 Minuit Versions. e e
2.3 Interference with Other Packages oo
2.4 Floating-point Precision

3 How to Use Minuit
3.1 TheFunction FCN. e
3.2 Running Minuit in Data-driven Mode.a .
3.21 Datatodrive Minuit e
3.2.2 Batchandinteractiverunning. ua ...
3.3 Running Minuit in Fortran-callable mode.
3.3.1 Initialize Minuit
3.3.2 Specify atitle foraproblem
3.3.3 Define a parameter, assigning values fromvariables
3.3.4 Define a parameter, assigning values from characiegst
3.3.5 ExecuteaMinuitcommand
3.3.6 Execute a Minuit command specified as a charactegstrin
3.3.7 Getthe currentvalue ofaparameter
3.3.8 Getthe current status of minimization
3.3.9 Getthe current value of the covariance matrix
3.3.10 Accesscurrent parameter erors e e e e
3.3.11 Find a function contour with the MNContour method
3.3.12 Switchto command-readingmodeo ...,
3.3.13 Setlogical unit number forinput

4 Minuit Commands

mmbwww,\,pp'—‘

10
11
12
13
13
13
14
14
15
15
16
16
16
17
17
18
18

19

5 How to get the right answer from Minuit.

5.1 Which MinimizertoUse. e
5.1.1 MIGRAD e
5.1.2 MINIMIZE
5.1.3 SCAN e
5.1.4 SEEK e
5.1.5 SIMPLEX e e

5.2 Floating point Precision e e e

5.3 ParameterLimits e e
5.3.1 Getting the Right Minimum with Limits.
5.3.2 Getting the right parameter errors with limits.

5.4 Fixing and Releasing Parameters e

5.5 Interpretation of Parameter Errors o e
5.5.1 Statistical Interpretation. o
5.5.2 The Reliability of Minuit Error Estimates.

5.6 Convergence in MIGRAD, and Positive-definiteness. .

5.7 Additional Trouble-shooting e

6 A complete example
6.1 Adata-drivenfit. e
6.2 The same example in Fortran-callable mode.

7 Interpretation of the errors on Minuit parameters

7.1 Function normalization and ERRORDEF
7.1.1 Chi-square normalization e e
7.1.2 Likelihood normalization

7.2 Non-linearities: MIGRAD versus HESSE versus MINOS
7.2.1 Errorsprinted by Minuit e
7.2.2 Errors after MIGRAD (or MINIMIZE)
7.2.3 ErrorsafterHESSE e
724 Errorsby MINOS e

7.3 Multiparameter errors e e e e e e e
7.3.1 TheErrorMatrix e e
7.3.2 MINOS with several free Parameters
7.3.3 Probability content of confidence regions

List of Figures

7.1 MINOSerrorsforparameterl
7.2 MINOS error confidence region forparameter1
7.3 Rectangular confidence region for parametersland 2
7.4 Optimal confidence region for parameters 1and2

32
32
35

37
37
37
38
39
39
39
40

41
41
41
42
42

43
43
44

List of Tables

7.1 Table ofup for multi-parameter confidence regions

44

Chapter 1: Minuit Basic Concepts
1.1 The Organization of Minuit.

The Minuit package acts on a multiparameter Fortran fundiowhich we give the generic narf€N,
although the actual name may be chosen by the user. Thisdomoust be defined and supplied by the
user (or by an intermediate program such as HBOOK]2] or PAW icase Minuit is being used under
the control of such an intermediate program). The valueafwill in general depend on one or more
variable parameters whose meaning is defined by the usey (bielintermediate program), but whose
trial values are determined by Minuit according to what teeruequests should be donertey (usually
minimize it).

To take a simple example, suppose the problem is to fit a poljaldhrough a set of data points. Then
the user would write awCN which calculates the chisquare between a polynomial andidite the
variable parameters &fCN would be the coefficients of the polynomials. Using Minuitramands, the
user would request Minuit to minimiZ&CN with respect to the parameters, that is, find those values of
the coefficients which give the lowest value of chisquare.

The user must therefore supply, in addition to the functmbé analyzed, a set of commands to instruct
Minuit what analysis is wanted. The commands may be giveeveral different forms:

— As a data file, corresponding to the traditional “data carfds batch processing;
— Typed in at execution time at a terminal, for interactivening;

— Coded in Fortran in the calling program, which allows lompiconditional execution, and all the
other possibilities of Fortran, but not interactivity, it must be compiled before execution. This
is sometimes known as running Minuit in “slave mode”. HBOQKI &AW use Minuit in this way.

It is also possible to mix any of the above forms, for exampdetisg off a fit with a standard command
file, then turning it over to the interactive user for the finalmand steps.

1.2 Internal and External Parameters.

Each of the parameters FgN is defined by the user as belonging to one of the followingdype

Freely variable: allowed to take on any value.
Variable with limits: allowed to vary only between two limits specified by the user.

Fixed: originally defined as variable, but now taking on only theugathe parameter
had at the moment it was fixed, or a value later assigned bystiie u

Constant: taking on only one value as specified by the user.

Undefined: never defined by user.

The user, irFCN, must of course be able to “see” all types of defined parameterd he therefore has
access to what we call thexternal parameter listhat is, the parameters as he defined them. On the other
hand, the internal Minuit minimizing routines only want te'e” variable parameters without limits, and
so they have access only to theernal parameter listwhich is created from the external list by the
following transformation:

2 Chapter 1. Minuit Basic Concepts

1 Squeeze out all parameters that are not variable.

2 Transform all variable parameters with limits, so that tleasformed parameter can vary without
limits. (See the next section for details concerning thésigformation.) Because this transfor-
mation is non-linear, it is recommended to avoid puttingiténon parameters where they are not
needed.

As an example, suppose that the user has defined the follgiragneters:

Parameter 1, constant.
Parameter 3, freely variable.
Parameter 10, variable with limits.
Parameter 11, constant.
Parameter 22, freely variable.

All others undefined.

Then the internal parameter list would be as follows:

Internal parameter 1 = external parameter 3.
Internal parameter 2 = external parameter 10, transfoappcbpriately.
Internal parameter 3 = external parameter 22.

In the above example, Minuit considers that the number @&real parameters is 22 (the highest external
parameter number defined), and the number of internal paeasnie 3. The latter number is passed as
NPAR to FCN. This is the number which determines, for example, the sfzéhe error matrix of the
parameters, since only variable parameters have errors.

An important feature of Minuit is that parameters are alldwe change types during a Minuit run.
Several Minuit commands are available to make variablerparers fixed and vice-versa; to impose,
change, or remove limits from variable parameters; and &vdefine completely new parameters at any
time during a run. In addition, some Minuit routines (notatile MINOS error analysis) cause one or
more variable parameters to be temporarily fixed during dieutation. Therefore, the correspondence
between external and internal parameter lists is in gemedghamic one, and the value X#fAR is not
necessarily constant.

1.2.1 The transformation for parameters with limits.

For variable parameters with limits, Minuit uses the foliogrtransformation:

Pt — _
P = arcsin <2 %@a — 1) Py =a+ b 5 & (sin Py + 1)

so that the internal valu®,,; can take on any value, while the external valdg; can take on values
only between the lower limit and the upper limib. Since the transformation is necessarily non-linear, it
would transform a nice linear problem into a nasty non-lir@#e, which is the reason why limits should
be avoided if not necessary. In addition, the transformadioes require some computer time, so it slows
down the computation a little bit, and more importantly,ntroduces additional numerical inaccuracy
into the problem in addition to what is introduced in the nuice calculation of theFCN value. The
effects of non-linearity and numerical roundoff both beeomore important as the external value gets

1.3. Minuit Strategy. 3

closer to one of the limits (expressed as the distance tesel@mnit divided by distance between limits).
The user must therefore be aware of the fact that, for exanfiple puts limits of(0, 10'°) on a parameter,
then the value8.0 and1.0 will be indistinguishable to the accuracy of most machines.

The transformation also affects the parameter error matficourse, so Minuit does a transformation
of the error matrix (and the “parabolic” parameter errorfewthere are parameter limits. Users should
however realize that the transformation is only a linearaxmation, and that it cannot give a mean-
ingful result if one or more parameters is very close to atlimhered P, /0Py ~ 0. Therefore, it is
recommended that:

— Limits on variable parameters should be used only whenetk&dorder to prevent the parameter
from taking on unphysical values.

— When a satisfactory minimum has been found using limits lithits should then be removed if
possible, in order to perform or re-perform the error arialysgthout limits.

Further discussion of the effects of parameter limits mafobed in the last chapter.
1.3 Minuit Strategy.

At many places in the analysis of the user function, Minuistrdecide whether to be “safe” and waste a
few function calls in order to know where it is, or to be “faatid attempt to get the requested results with
the fewest possible calls at a certain risk of not obtainhgdrecision desired by the user. In order to
allow the user to influence these decisions, there is amialtdtinuit parametef STRAT which can be set
by the user through the comma8HT STRategy. In the current release, this parameter can take on three
integer values (0, 1, 2), and the default value is 1. Valuedizates to Minuit that it should economize
function calls; it is intended for cases where there are nvangble parameters and/or the function takes
a long time to calculate and/or the user is not interestecakig precise values for parameter errors. On
the other hand, the value 2 indicates that Minuit is allowedaste function calls in order to be sure that
all values are precise; it is intended for cases where theifimis evaluated in a very short time and/or
where the parameter errors must be calculated reliably

1.4 Parameter Errors.

Minuit is usually used to find the “best” values of a set of pagters, where “best” is defined as those
values which minimize a given functioRCN. The width of the function minimum, or more generally, the
shape of the function in some neighbourhood of the minimuwgsgnformation about thancertainty

in the best parameter values, often called by physicistp#nameter errors An important feature of
Minuit is that it offers several tools to analyze the parametrors.

1.4.1 FCN Normalization and the ERRor definition.

Whatever method is used to calculate the parameter erhag wtill depend on the overall (multiplica-
tive) normalization ofCN, in the sense that if the value BEN is everywhere multiplied by a constafit
then the errors will be decreased by a fagig¥. Additive constants do not change the parameter errors,
but may imply a different goodness-of-fit confidence level.

Assuming that the user knows what the normalization offii$ means, and also that he is interested
in parameter errors, tMBET ERRordef command allows him to define what he means by one “error”,
in terms of the change IRCN value which should be caused by changing one parameter b{eooeg’.

4 Chapter 1. Minuit Basic Concepts

If the FCN is the usual chisquare function (defined below), tEBRordef should be set to 1.0 (the
default value anyway) if the user wants the usual one-stdndiaviation errors. IFCN is a negative-log-

likelihood function, then the one-standard-deviatioruediorERRORDEF is 0.5. IfFCN is a chisquare, but
the user wants two-standard-deviation errors, #RRORDEF should be = 4.0, etc.

Note that in the usual case where Minuit is being used to parfofit to some experimental data, the
parameter errors will be proportional to the uncertaintthim data, and therefore meaningful parameter
errors cannot be obtained unless the measurement errdrs déta are known. In the common case of a
least-squares fiECN is usually defined as a chisquare:

" fzg,a) — e;)?
X2(a) :Z f(15)2 z) (1_1)
i=1 i

g

whereq is the vector of free parameters being fitted, andathare the uncertainties in the individual
measurements;. If these uncertainties are not known, and are simply leftafuhe calculation, then
the fit may still have meaning, but not the quantitative valokthe resulting parameter errors. (Only the
relative errors of different parameters with respect tdeztber may be meaningful.)

If the o; are all overestimated by a factgr, then the resulting parameter errors from the fit will be
overestimated by the same factor

1.4.2 The Error Matrix.

The Minuit processordIGRAD andHESSE normally produce an error matrix. This matrix is the inverse
of the matrix of second derivatives BN, transformed if necessary into external coordinate space
and multiplied by the square root BRRORDEF. Therefore, errors based on the Minuit error matrix take
account of all the parameter correlations, but not the imogmtities. That is, from the error matrix alone,
two-standard-deviation errors are always exactly twickiges one-standard-deviation errors.

When the error matrix has been calculated (for example bystleessful execution of a command
MIGrad or HESse) then the parameter errors printed by Minuit are the squaotsrof the diagonal
elements of this matrix. The commargi#0w COVariance andSHOw CORrelations allow the user to
see the off-diagonal elements as well. The comnsiiid EIGenvalues causes Minuit to calculate and
print out the eigenvalues of the error matrix, which shodilthe positive if the matrix is positive-definite
(see below on Migrad and positive-definiteness).

The effect of correlations on the individual parameter iri@an be seen as follows. When parameter
N is FIXed, Minuit inverts the error matrix, removes the row and owolucorresponding to parameter
N, and re-inverts the result. The effect on the errors of theroparameters will in general be to make
them smaller, since the component due to the uncertaintgrimnpeteN has now been removed. (In the
limit that a given parameter is uncorrelated with paramefets error will not change when parameter
N is fixed.) However the procedure is not reversible, sinceuilliforgets the original error matrix, so if
parameten is thenRELeased, the error matrix is considered as unknown and has to bé&wdated with
appropriate commands.

Theinternal error matrixmaintained by Minuit is transformed for the user imixternal coordinatesbut the numbering
of rows and columns is of course still according to interredgmeter numbering, since one does not want rows and columns
corresponding to parameters which are not variable. Thsfivamation therefore affects only parameters with lifriftthere
are no limits, internal and external error matrices are émees

1.4. Parameter Errors. 5

1.4.3 MINQOS Errors.

The Minuit processoMINOS was probably the first, and may still be the only, generalbilable program

to calculate parameter errors taking into account bothrpeter correlations and non-linearities. The
MINOS error intervals are in general assymmetric, and may be exgeto calculate, especially if there
are a lot of free parameters and the problem is very non#inea

MINOS can only operate after a good minimum has already been famatithe error matrix has been
calculated, so th&#INOS command will normally follow aMIGRAD command. ThelINOS error for a
given parameter is defined as the change in the value of thameser which causeB’ to increase by
the amountP, whereF” is the minimum ofFCN with respect to albtherfree parameters, aritb is the
ERRordef value specified by the user (default = 1.).

The algorithm for finding the positive and negatieN0S errors for parameteli consists of varying
parametel, each time minimizing'CN with respect to all the othefPAR-1 variable parameters, to find
numerically the two values of parametefor which the minimum ofCN takes on the valueBMIN+UP,
whereFMIN is the minimum ofFCN with respect to alNPAR parameters. In order to make the procedure
as fast as possibl@/INOS uses the error matrix to predict the values of all paramedetbe various
sub-minima which it will have to find in the course of the caddtion, and in the limit that the problem
is nearly linear, the predictions #fiNOS will be nearly exact, requiring very few iterations. On thber
hand, when the problem is very non-linear (iCN is far from a quadratic function of its parameters),
that is precisely the situation wheNOS is needed in order to indicate the correct parameter errors.

1.4.4 Contour Plotting

Minuit currently offers two very different procedures fonding FCN contours. They will be identified
by the corresponding command namé8Ntour andMNContour.

CONtour

This procedure is designed for a lineprinter or alphanuerteriminal as output device, and gives a static
picture of FCN as function of the two parameters specified by the user, shatlli the other variable
parameters (if any) are considered as temporarily fixedeat turrent values. First a range is chosen,
by default two current standard deviations on either sidéhefcurrent best value of each of the two
parameters, and a grid size n is chosen, by default 25 by 26gmssfor the full range of each parameter.
Contour zero is defined as the current best function valug (presumably the minimum), and then the
i" contour is defined as wheReN has the valug™,,;,, + i2 * UP. The procedure then simply evaluates
FCN at the four corners of each of thé grid positions (which make&: + 1)? evaluations) to determine
whether thei'" contour passes through it. The method, although not vergiesiti or precise, is very
robust, and capable of revealing unexpected multiple yslle

MNContour

The contour calculated iyNContour is dynamic, in the sense that it represents the minimumCaf
with respect to all the oth@tPAR-2 parameters (if any). In statistical terms, this meansih@bntour
takes account of the correlations between the two parambging plotted, and all the other variable
parameters, using a procedure analogous to tharwds. (If this feature is not wanted, then the other
parameters must il Xed before callingiNContour.) MNContour provides the actual coordinates of the
points around the contour, suitable for plotting with a dpiap routine or by hand. The points are given

6 Chapter 1. Minuit Basic Concepts

in counter-clockwise order around the contour. Only ondamamnis calculated per command (or Fortran
call), and the level id,;, + UP. whereUP is theERRordef specified by the user, or 1.0 by default. The
number of points to be calculated is chosen by the user (Re&20 for the data-driven mode.). As a
by-product MNContour provides theMINOS errors of the two parameters in question, since these dre jus
the extreme points of the contour (USBOw MINos to see them). In command-driven mode, a rough
(alphanumeric, not graphic) plot of the points is giverPfiintlevel> 0) and the numerical values of
the coordinates are printed §RIntlevel> 1). In Fortran-callable mode, the user gets Fortran access
to the vector of point coordinates througBROUTINE MNCONT.

Chapter 2: Minuit Installation.
2.1 Minuit Releases.

Minuit has been extensively revised in 1989, but the usatprdgely compatible with that of older ver-
sions which have been in use since before 1970. Users familia older releases, who have not yet
used releases from 1989 or later, must however read thisahanwrder to adapt to the few changes as
well as to discover the new features and easier ways of usihigatures, such as free-field input.

2.2 Minuit Versions.

The program is entirely in standard portable Fortran 77, rggiires no external subroutines except
those defined as part of the Fortran 77 standard and one llégicdion INTRAC *. The only difference
between versions for different computers, apart fiimRAC, is the floating point precision (see heading
below).

As with previous releases, Minuit does not use a memory nanagis makes it easy to install and inde-
pendent of other programs, but has the disadvantage thathH®mtmemory occupation and the maximum
problem size (number of parameters) are fixed at compilatioa. The old solution to this problem,
which consisted of providing “long” and “short” versionsgdproved to be somewhat clumsy and any-
way insufficient for really exceptional users, so it has bakandoned in favour of a single “standard”
version.

The currently“standard” version of Minuit will handle fuliens of up to 100 parameters, of which not
more than 50 can be variable at one time. Because of the use ®ARAMETER statement in the Fortran
source, redimensioning for larger (or smaller) versionseg/ easy (although it will help to have a
source code manager or a good editor to propagate the moBNRMIETER statement through all the
subroutines, and of course it implies recompilation). Tleénition of what is “standard” may well
change in the light of experience (it was 35 instead of 50atdei parameters for release 89.05), and it is
likely that different installations will wish to define itifierently according to their own applications. In
any case, the dimensions used at compilation time are drintthe program header at execution time,
and the program is of course protected against the usegttgidefine too many parameters. The user
who finds that the version available to him is too small (or Ibig) must try to convince his computer
manager to change the installation default or to providedtitianal special version, or else he must
obtain the source and recompile his own version.

2.3 Interference with Other Packages

The new Minuit has been designed to interfere as little asiplaswith other programs or packages which
may be loaded at the same time. Thus it uses no memory managieo external subroutines (except
LOGICAL FUNCTION INTRAC), all its own subroutine hames start with the lettgligexcept Minuit and
the user written routines), alOMMON block names start with the charact#itr, and the user should not
need to use explicitly any Minu@0MMON blocks.

In addition, more than one different functions can be miagdiin the same execution module, provided
the functions have different names, and provided one maatiin and error analysis is completely
finished before the next one begins.

LINTRAC is available from the CERN Program Library for all common gurters, and in the worst case can be replaced by
aLOGICAL FUNCTION returning a value of TRUE. or .FALSE. depending on whether or not Minuit is being used interabtive

7

8 Chapter 2. Minuit Installation.

2.4 Floating-point Precision

It is recommended for most applications to use 64-bit flgafinint precision, or the nearest equivalent
on any particular machine. This means that the standardiMimatalled on Vax, IBM and Unix work-
stations will normally be th®0UBLE PRECISION version, while on CDC and Cray it will bBINGLE
PRECISION.

The arguments of the useFE€N must of course correspond in type to the declarations ceahjniito the
Minuit version being used. The same is true of course for adltihg-point arguments to any Minuit
routines called directly by the user in Fortran-callabledmoFurthermore, Minuit detects at execution
time the precision with which it was compiled, and expects the calculations insideCN will be per-
formed approximately to the same accuracy. (This accusacgliedEPSMAC and is printed in the header
produced by Minuit when it begins execution.) If the userldddinuit by using a double precision ver-
sion but making internafCN or FUTIL computations in single precision, Minuit will interpretudoff
noise as significant and will usually either fail to find a miim, or give incorrect values for the param-
eter errors. It is therefore recommended, when using dquigleision REAL*8) Minuit, to make sure
all computations irFCN andFUTIL (if used), as well as all subroutines called BN andFUTIL, are
REAL*8, by including the appropriateMPLICIT declarations irFCN and all user subroutines called by
FCN. If for some reason the computations cannot be done to aspyeactomparable with that expected
by Minuit, the usemust inform Minuit of this situation with theSET EPS command.

Although 64-bit precision is recommended in general, the Kenuit is so careful to use all available
precision that in many cases, 32 bits will in fact be enoughis therefore possible now to envisage
in some situations (for example on microcomputers or whemang is severely limited, or if 64-bit
arithmetic is very slow) the use of Minuit with 32- or 36-bitggision. With reduced precision, the user
may find that certain features sensitive to first and secoffiereinces ESse, MINOs, MNContour) do
not work properly, in which case the calculations must bégpered in higher precision.

Chapter 3: How to Use Minuit
3.1 The Function FCN.

The user must always supply a Fortran subroutine which lza&sithe function value to be minimized
or analyzed.

CALL FCN (NPAR,GRAD,FVAL,XVAL,IFLAG,FUTIL)

Input parameters

NPAR number of currently variable parameters.
XVAL vector of (constant and variable) parameters.
IFLAG Indicates what is to be calculated (see example below).

FUTIL Name of utilitary routine (if needed, it must be declaBXdERNAL and provided by the user).
Output parameters

FVAL The calculated function value.

GRAD The (optional) vector of first derivatives).

Note that when Minuit is being used through an intermediatekage such as HBOOK or PAW, then the
FCN may be supplied by the this package.

Example of FCN routine

SUBROUTINE FCN(NPAR,GRAD,FVAL,XVAL,IFLAG,FUTIL)

IMPLICIT DOUBLE PRECISION (A-H,0-Z) ! for 32-bit machines
DIMENSION GRAD (*),XVAL(*)
EXTERNAL FUTIL ! (if needed and supplied by user)
C_
IF (IFLAG .EQ. 1) THEN
C read input data,
C calculate any necessary constants, etc.
ENDIF
IF (IFLAG .EQ. 2) THEN
C calculate GRAD, the first derivatives of FVAL
C (this is optional)
ENDIF
C Always calculate the value of the function, FVAL,
C which is usually a chisquare or log likelihood.
C Optionally, calculation of FVAL may involve
FTHEO = FUTIL(....)
C It is responsability of user to pass
C any parameter values needed by FUTIL,
C either through arguments, or in a COMMON block
IF (IFLAG .EQ. 3) THEN
C will come here only after the fit is finished.
C Perform any final calculations, output fitted data, etc.
ENDIF
RETURN
END

10 Chapter 3. How to Use Minuit

The name of the subroutine may be chosen freely (in docurtiemtae give it the generic namecn)
and must be declareKTERNAL in the user’'s program which calls Minuit (in data-driven reddr calls
Minuit subroutines (in Fortran-callable mode). The megrohthe parametersvAL is of course defined
by the user, who uses the values of those parameters toatald$ function value. The starting values
must be specified by the user (either by supplying parametinitions from a file, or typing them
at the terminal, in data-driven mode; or by calling submeNPARM in Fortran-callable mode), and
later values are determined by Minuit as it searches for timenmam or performs whatever analysis is
requested by the us&®UTIL represents the name of a function or subroutine which mayefirat! and
supplied by the user and called fraran. If the user does not use tB&TIL feature, the last argument
may be given as zero, but if used, the nam&WwrfIL must be declareBXTERNAL and a subprogram of
that name must be supplied at loading time.

It is possible, by giving them different names, to analyaesa differentFCNs in one job. However, one
analysis must be completed before the next is started. kr éochvoid interference between the analyses
of two differentFCNs, the user should call Minuit (in data-driven modeMSINIT (in Fortran-callable
mode) each time a neRCN is to be studied.

3.2 Running Minuit in Data-driven Mode.

Minuit can be run in two different mode®ata-driven mode means that the user drives Minuit with
data, either typed interactively from a terminal or from gadiée in batch; andFortran-callable mode
means that Minuit is driven directly from Fortran subroaticalls, without data. To some extent, the
two modes may also be mixed. This section describes the fodemand is valid for both interactive
and batch running. The differences between interactivebaich are described in a separate subsection
below.

In data-driven mode the user must supply, in addition to the subrouti¢®, amain program which
includes the following statements (the statements in uppse are required, those given in lower case
are optional):

Example of main program when using Minuit in data driven mode

EXTERNAL FCN

external futil

call mintio(ird,iwr,isav)
CALL MINUIT(FCN,futil)

The name ofFCN may be chosen freely, and is communicated to Minuit as itsdhgument.FUTIL is
the generic name of a function or subroutine which the usgraptionally call fromFCN, and if he does
call such a routine, he must declare it external and commatmits name to Minuit as well. FUTIL is
not used, then the second argument may be put eqoabitd need not be declarBdTERNAL; if FUTIL
is declared=XTERNAL, it must be supplied in the loading process.

3.2. Running Minuit in Data-driven Mode. 11

CALL MINTIO (IREAD,IWRITE,ISAVE)

Action: The purpose oflINTIO is to communicate to Minuit the 1/O units.

Input parameters

IREAD Fortran unit number for reading (default 5).
IWRITE Fortran unit number for writing (default 6).
Isave Fortran unit number for saving (default 7).

If the default values are acceptable, then it is not neces$earallMINTIO. It is the user’s responsibility
that the 1/0 units are properly opened for the appropriatratons.

Note

In data-driven mode, that is wittALL MINUIT, you shouldnot call MNINIT, since Minuit takes care of
all initialization. To change unit numbers, cHlINTIO before calling MINUIT.

In order that control returns to the user program aftekl. MINUIT, the last command in the corre-
sponding Data Block should I&TURN. If the last command iBXIT or STOP, then Minuit will execute a
FortranSTOP, and if the last command BND, Minuit will read a new Data Block from the current input
unit.

3.2.1 Data to drive Minuit

In data-driven mode, either interactively or in batch, Mimeads the following data provided by the
user:

— Title: (a string of 50 characters or less) which can be chosen ftgethe user, to help identify
the job.

— Parameter definitions: for each parameter one record giving:

1 The parameter number. This is the index in the arrayvAL by which the user functioBCN
will access the value of the parameter.

2 The parameter name. A string of ten characters to help the user in reading the Minu
output.

3 The starting value of the parameter.

4 The starting step size,or expected uncertainty in this parameter, if it is to be dalde
parameter. Otherwise blank or zero if the value is to be emst

OptionalThdower bound (limit) below which the parameter value must not vary.
OptionalTheupper bound (limit) above which the parameter value must not vary.

Normally the user shouldot specify limits on the parameters, that is both should beblieifitk.

If one limit is specified, then BOTH must be specified. The prtips of limits are explained
elsewhere in this document.

The format of the parameter definitions may be either fixeld-fieach item in a field of width
ten columns), or in free-field format. In the free-field fotmidems are separated by blanks or
one comma, and the parameter name must be given betweea giraies. The program assumes
free-field format if it finds two single quotes in the line. Bareter names will be blank-padded or
truncated to be ten characters long.

12 Chapter 3. How to Use Minuit

— Ablank record: indicates the end of parameter definitions.

— If the userFCN reads input data from the same input stream as the Minuit(daadefault stream
iISUNIT 5), then theFCN data should appear here.

— Minuit commands: these specify actions which should be performed by Minuibom@ands
must not contain leading or embedded blanks, but may bedteddo three characters, and may
be given in upper or lower case. Some commands have numargainents, and these may be
given in free-field format, separated by blank(s) or one cafihe list of recognized commands
is given and explained below. The commai&l.P causes Minuit to write to the output stream
a list of currently recognized commands. The commBARDP SHOw lists the availableSsET and
SHOw commands.

Any or all of the above data read by Minuit can reside on one arendifferent files, and Minuit can be
instructed to switch to reading a different file with tBieT INPUT command. Optionally, thtle record
may be preceeded by a record beginning with the charagEarsTITLE, and theparameter definitions
may be preceeded by a record beginning with the charaBR&METERS. It is in fact recommended
always to include these optional records when preparingafide, since the file can then be read at any
time (not just at the beginning of a Minuit run) and will alvglge interpreted correctly by Minuit.

Example of a typical Minuit data set

SET TITLE

Fit to time distribution of K decays, Expt NA94
PARAMETERS

1 ’Real(X)’ 0. .1

2 ’Imag(X)’ 0. .1

5 ’Delta M’ .535 .01

10 ’K Short LT’ .892

11 ’K Long LT’ 518.3

fix b6

migrad

set print O
minos

restore
migrad

minos

fix 5

set param 5 0.535
mncontour 1 2
stop

3.2.2 Batch and interactive running.

In its initialization phase, Minuit attempts to determinéðer or not it is running interactively, by
calling the logical functiorINTRAC, a routine in the CERN Program Library which can be providad f
all commonly used computers. For our purposes, we definalingrinteractively” as meaning that input
is coming from a terminal under the control of an intelligbeing, able to make decisions based on the

In older versions of Minuit, there was a special format f@ MfiNOs command, when specifying a list of parameters; the
new Minuit reads thelINOs command with the same free-field format as the other commads parameter numbers are
specified, they must now be separated by a blank or comma.

3.3. Running Minuit in Fortran-callable mode. 13

output he receives at the terminal. It is not always easyfaRAC to know whether this is the case, so,
depending on your operating system, Minuit can be foolecitain cases. When this happens, the user
can always override the beliefs DfTRAC with the commandSET BATch andSET INTeractive. The
commandsHOw INTeractive informs the user of the current mode.

According to whether or not it believes it is running intdragly, Minuit behaves differently in the
following ways:

— If interactive, the user is prompted before each data deisaread.

— If interactive, Minuit recovers from many error condittoand prompts the user to enter correct
data or to specify additional required input. If the samereoonditions occur in batch mode,
the program either exits (if no corrective action seemsipteysor ignores the incorrect data (for
example, a command it cannot interpret) and continues.

— The default page size for output is a typical terminal digiem (80 by 24) if interactive, and a
typical printed page size (120 by 56) if batch, but these @oMerridden with the command&T
WIDth andSET LINes.

When an interactive user requests Minuit to read furtheutifippm an external file (th€ET INPut
command), then further input is considered to be tempgraribatch mode, until input reverts to the
primary input stream.

3.3 Running Minuit in Fortran-callable mode.

The following Minuit subroutines are provided in order tioal the user to communicate with Minuit and
perform all Minuit functions (define parameters, executaemnds, etc.) directly from Fortran through
subroutine calls. In the following list of subroutines, jpuit arguments are indicated by appending a star
* to its name. It should also be noted that for the Double Fimtigersion of Minuit (recommended
for all 32-bit machines such as IBM, Vax, Unix workstations;.), all theREAL arguments given below
must be declaredOUBLE PRECISION.

3.3.1 Initialize Minuit
CALL MNINIT (IRD,IWR,ISAV)

Input parameters:

IRD Unit number for input to Minuit.

IWR Unit number for output from Minuit.

ISAV Unit number for use of the SAVE command.

3.3.2 Specify a title for a problem
CALL MNSETI (CTITLE)

Input parameter:

CTITLE Character string of up to 50 characters containing an ifieatiion text for the present job or
fit.

14 Chapter 3. How to Use Minuit

3.3.3 Define a parameter, assigning values from variables

CALL MNPARM (NUM, CHNAM,STVAL,STEP,BND1,BND2, IERFLG*)

Input parameters:
NUM Parameter number as referenced by us&cin

CHNAM Character string of up to 10 characters containing the natriehwthe user assigned to the
given parameter.

STVAL Starting value

STEP Starting step size or approximate parameter error.

BND1 Lower bound (limit) on parameter value, if any (see below).
BND2 Upper bound (limit) on parameter value, if any (see below).
Output parameter:

IERFLG Error return codeo if no error,>0 if request failed.

If BND1=BND2=0., then the parameter is considered unbounded, which is memaied unless limits are
needed to make things behave well.

3.3.4 Define a parameter, assigning values from characterrgtg

Subroutine MNPARS defines a new (or redefines an old) pararspexifying values for its number,
name, starting value, step size, and limits if any. All thesleles are given in one character string as if
it was being read from the input stream. It can therefore leel us place of MNPARM if the character
string format is more convenient than the calling sequehddNPARM.

Calling sequence:

CALL MNPARS (CHSTR,ICONDN*)

Input parameter:

CHSTR String specifies the parameter definition in the usual Mifarinat, as on a data record (See
3.2.1). The fields are in the same order as the arguments toARNP

Output parameter:
ICONDN Output condition

Possible values of output condition:

ICONDN=0 all OK

ICONDN=1 error, attempt to define parameter is ignored
ICONDN=2 end of parameter definitions (parameter number zero)

Example:

CALL MNPARS(’ 15 ’’Lambda Mass’’ 1.2, 0.1’ , ICONDN)

3.3. Running Minuit in Fortran-callable mode. 15

3.3.5 Execute a Minuit command

CALL MNEXCM (FCN,CHCOM,ARGLIS,NARG,IERFLG*,FUTIL)

Input parameters:

FCN Name of the function being analyzed (to be decle&ZETERNAL)

CHCOM Character string containing the name of the Minuit commarigetexecuted (see below).
ARGLIS Array of dimensiorMAXARG, containing the numeric arguments to the command (if any),
NARG Number of arguments specifiellARG<MAXARG),

FUTIL Name of a function called byCN (or =0 if not used). If used this function must be declared
EXTERNAL.

Output parameter:
IERFLG Error return codeo0 if the command was executed normaky, otherwise.

Executing a command by callingNEXCM has exactly the same effect as reading the same command in
data-driven mode, except that a few commands would makense snd are not available in Fortran-
callable mode (e.gSET INPUT). The other difference is thatontrol always returns to the calling
routine from MNEXCM, even after command&iD, EXIT, andSTOP.

3.3.6 Execute a Minuit command specified as a character strin

Subroutine MNCOMD causes the execution of the Minuit comensypecified as the second argument.
It therefore works like MNEXCM, except that it accepts thdiencommand with arguments as one
character string. This is more convenient in many cases avidsaproblems of word length matching

(DOUBLE PRECISION constants).

CALL MNCOMD (FCN,CHSTR, ICONDN*,FUTIL)

Input parameters:
FCN Name of the function being analyzed (to be decl&¥TERNAL)
CHSTR The full Minuit command with arguments (CHARACTER)

FUTIL Name of a function called byCN (or =0 if not used). If used this function must be declared
EXTERNAL.

Output parameter:
ICONDN Error return codeo0 if the command was executed normabky, otherwise.

Some abnormal conditions:

ICONDN=1 command was blank, ignored

ICONDN=2 command line was unreadable, ignored

ICONDN=3 command was unknown, ignored

ICONDN=4 abnormal termination (e.g., MIGRAD not converged)

16 Chapter 3. How to Use Minuit

3.3.7 Getthe current value of a parameter
This routine is the inverse ofNPARM and can for instance be used after a fit.

CALL MNPOUT (NUM,CHNAMx*,VAL*,ERROR*,BND1*,BND2*, IVARBL*)

Input parameter:
NUM Parameter number as referenced by us&cihand about which information is required.
Output parameters:

CHNAM Character string of up to 10 characters containing the natriehwthe user assigned to the
given parameter.

VAL Current parameter value (fitted value if fit has converged),
ERROR Current estimate of parameter uncertainty (or zero if cont¥t
BND1 Lower limit on parameter value, if any (otherwise zero).
BND2 Upper limit on parameter value, if any (otherwise zero).

IVARBL Internal parameter number if parameter is variable, or Egr@rameter is constant, or negative
if parameter is undefined.

3.3.8 Get the current status of minimization

CALL MNSTAT (FMIN*,FEDM#*,ERRDEF*,NPARI*,NPARX*,ISTAT*)

Output parameters:

FMIN The best function value found so far

FEDM The estimated vertical distance remaining to minimum
ERRDEF The value ofuP defining parameter uncertainties

NPARI The number of currently variable parameters

NPARX The highest (external) parameter number defined by user
ISTAT A status integer indicating how good is the covariance matri

0 Not calculated at all

1 Diagonal approximation only, not accurate
2 Full matrix, but forced positive-definite
3

Full accurate covariance matrix (Aft&IGRAD, this is the indication of normal conver-
gence.)

3.3.9 Getthe current value of the covariance matrix

3.3. Running Minuit in Fortran-callable mode. 17

CALL MNEMAT (EMAT*,NDIM)

Input parameter:

NDIM Integer variable specifying the number of rows and colunfresduer has reserved BYAT
to store the matrix element&iDIM should be at least as large as the number of parameters
variable at the time of the call, otherwise the user will gdiygart of the full matrix.

Output parameter:

EMAT Array declared a®IMENSION EMAT(NDIM,NDIM) which is to be filled with the (external)
covariance matrix.

3.3.10 Access current parameter errors

CALL MNERRS (NUM,EPLUS*,EMINUS* ,EPARAB* ,GLOBCC*)

Input parameter:

NUM Parameter number. MUM>0, this is taken to be an external parameter numbetyiiko, it is
the negative of an internal parameter number.

Output parameters:

EPLUS The positiveMINOS error of parameteNUM.

EMINUS The negativelINGS error (a negative number).

EPARAB The “parabolic” parameter error, from the error matrix.

GLOBCC The global correlation coefficient for paramet@. This is a number between zero and one
which gives the correlation between paramater and that linear combination of all other
parameters which is most strongly correlated witiy.

Note that this call does not cause the errors to be calculaterely returns the current existing values.
If any of the requested values has not been calculated, dydesdestroyed (for example, by a redefini-
tion of parameter value$NERRS returns a value of zero for that argument. Thus the calNERRS will
normally follow the execution of comman®3GRAD, HESSE, MNContour, and/orMINOS.

3.3.11 Find a function contour with the MNContour method

CALL MNCONT (FCN,NUM1,NUM2,NPT,XPT*,YPT*,NFOUND*,FUTIL)

Input parameters:

FCN Name of the function being treated (to be declaE&TUERNAL)

NUM1/2 Parameter numbers with respect to which the contour is tetermined (external).
NPT The number of points required on the contoes)(

FUTIL Name of a function called byCN (or =0 if not used). If used this function must be declared
EXTERNAL.

18 Chapter 3. How to Use Minuit

Output parameters:

XPT Array of x-coordinates of contour points with values forgraetemUM1. It must be declared
with aDIMENSION XPT(NPT).

YPT Array of y-coordinates of contour points with values forgaetemNUM2. It must be declared
with aDIMENSION YPT(NPT).

NFOUND The number of points actually found on the contour. If allgoell, this will be equal taiPT,
but it can be negative (if the input arguments are not vatid)zero if less than four points
have been found, or less thaRT if the program could not findPT points.

Note that alternativelyiNContour can be calculated by callingNEXCM to issue theMNContour com-
mand, but then the user does not have Fortran access to tia paint coordinateXPT andYPT.

3.3.12 Switch to command-reading mode
This facility can be useful when one wants to continue irtiraly.

CALL MNINTR (FCN,FUTIL)

Input parameters:

FCN Name of the function being treated (to be declaE®TERNAL)
FUTIL Name of a function called byCN (or =0 if not used). If used this function must be declared
EXTERNAL.

The call toMNINTR will cause Minuit to read commands from the ubiRD (originally specified by the
user in his call tMNINIT, IRD is usually 5 by default, which in turn is usually the termibgl default).
Minuit then reads and executes commands until it encouatessnmandEND, EXIT, RETurn, or STOP,

or an end-of-file on input (or an unrecoverable error coaditivhile reading or trying to execute a
command), in which case control returns to the program wtédledMNINTR.

3.3.13 Set logical unit number for input
Sets logical unit number of input unit from which Minuit wikad the next command.

CALL MNINPU (NUNIT, IERRx*)

Input parameters:

NUNIT The I/O unit number, which must be a valid unit, opened fodieg (Minuit makes no checks
at this level and will not attempt to open any files.)

IERR returned as zero unless Minuit’s internal buffer which esounit numbers is full, which is a
fatal error. If NUNIT is specified as zero, Minuit returns &ading the previous unit (which
is why it has to store them).

Chapter 4: Minuit Commands

In data-driven mode, Minuit accepts commands in the folhgaformat:

command <argl> [arg2] etc.

commandOne of the commands listed below,
<argi> Numerical values ofequired arguments, if any.
[argi]] Numerical values obptional arguments, if any.

The arguments (if any) are separated from each other andtfrermommand by one or more blanks or
a comma. Commands may be given in upper or lower case, and enalghveviated, usually to three
characters. The shortest recognized abbreviations ai@ated by the capitalized part of the commands
listed below. Examples of valid commands are:

SET INPUT 21

migrad

mig 500

SET LIMITS 14 -1.0,1.0
contours 1 2

MINOS 500 1,3,5,21,22

In Fortran-callable mode, all the same commands (with a fewonis exceptions as indicated) can be
executed by passing the command-string and arguments taithfira CALL MNEXCM statement.

List of Minuit commands

CALl <iflag>

Instructs Minuit to call subroutin€CN with the value ofIFLAG=<iflag>. (The actual name of the
subroutine called is that given by the user in his call to NtinuMNEXCM; the name given in this command
is not used.) Ikiflag> > 5, Minuit assumes that a new problem is being redefined, amuigefs the
previous best value of the function, covariance matrix, &ticsis command can be used to instruct the
user function to read new input data, recalculate constantstherwise modify the calculation of the
function.

CLEar

Resets all parameter names and values to undefined. Mustlioe followed by aPARameters
command or equivalent, in order to define parameter values.

CONtour <parl> <par2> [devs] [ngrid]

Instructs Minuit to trace contour lines of the user functigith respect to the two parameters whose ex-
ternal numbers arepar1> and<par2>. Other variable parameters of the function, if any, will béveir
values fixed at the current values during the contour tracifige optional parametelidevs] (default
value 2.) gives the number of standard deviations in eacdmpeter which should lie entirely within the
plotting area. Optional parameténgrid] (default value 25 unless page size is too small) determines
the resolution of the plot, i.e. the number of rows and colsmofithe grid at which the function will be
evaluated. [See als@Contour.]

19

20 Chapter 4. Minuit Commands

END

Signals the end of a data block (i.e., the end of a fit), andieaphat execution should continue, because
another Data Block follows. A Data Block is a set of Minuit @atonsisting of (1) A Title, (2) One or
more Parameter Definitions, (3) A blank line, and (4) A set ot Commands. Th&ND command

is used when more than one Data Block is to be used with the 8am&inction. CALL FCNThe END
command first causes Minuit to issu€&LL FCN with IFLAG=3, in order to allowFCN to perform any
calculations associated with the final fitted parameteresglunless @aALL FCN 3 command has already
been executed at the currédtt value. The obsolete commaBND RETurn is the same as tHeETURN
command.

EXIT

Signals the end of execution. TERRIT command first causes Minuit to iSSU€ALL FCN with IFLAG=3,

in order to allowFCN to perform any calculations associated with the final fittachmeter values, unless
aCALL FCN 3 command has already been executed at the cuF@nvalue. Then it executes a Fortran
STOP.

FIX <parno> [parno] ... [parnol

Causes parameter(sparno> to be removed from the list of variable parameters, and tfaire(s) will
remain constant during subsequent minimizations, ettil,amother command changes their value(s) or
status.

HELP [SET] [SHOw] [command]

If there are no arguments, causes Minuit to list the avadlabimmands. If argument SET or SHOW is
specified, the list of recognizes£T andSHOw commands is displayed. If a command name is specified
as argument, a short explanation of the command syntaxeés giv

HESse [maxcalls]

Instructs Minuit to calculate, by finite differences, thesdian or error matrix. That is, it calculates
the full matrix of second derivatives of the function withspect to the currently variable parameters,
and inverts it, printing out the resulting error matrix. Téygtional argumenf{maxcalls] specifies the
(approximate) maximum number of function calls after whiwoh calculation will be stopped.

IMProve [maxcalls]

If a previous minimization has converged, and the currehtegof the parameters therefore correspond
to a local minimum of the function, this command requestsaactefor additional distinct local minima.
The optional argumerimaxcalls] specifies the (approximate) maximum number of functiorsctier
which the calculation will be stopped.

MIGrad [maxcalls] [tolerance]

Causes minimization of the function by the method of Migrtte most efficient and complete sin-
gle method, recommended for general functions (seeMlBdmize). The minimization produces as a
by-product the error matrix of the parameters, which is lgueliable unless warning messages are pro-
duced. The optional argumefihaxcalls] specifies the (approximate) maximum number of function
calls after which the calculation will be stopped even ifasmot yet converged. The optional argument
[tolerance] specifies required tolerance on the function value at thénmoim. The default tolerance
is 0.1, and the minimization will stop when the estimated vertitiatance to the minimunepM) is less
than0.001* [tolerance] *UP (SeeSET ERR).

21

MINImize [maxcalls] [tolerance]

Causes minimization of the function by the method of Migrad,does thélIGrad command, but
switches to theSIMplex method if Migrad fails to converge. Arguments are asMa@Grad. Note
that command requires four characters to be unambiguobiit0s.

MINOs [maxcalls] [parno] [parno]

Causes a Minos error analysis to be performed on the pareswelt®se numberEparno] are specified.

If none are specified, Minos errors are calculated for allabde parameters. Minos errors may be
expensive to calculate, but are very reliable since theg tadcount of non-linearities in the problem
as well as parameter correlations, and are in general asyriom€he optional argumentmaxcalls]
specifies the (approximate) maximum number of functionsqal parameter requested after which
the calculation will be stopped for that parameter.

MNContour <paril> <par2> [npts]

Calculates one function contour BEN with respect to parametepar1 andpar2, with FCN minimized
always with respect to all oth@iPAR-2 variable parameters (if any). Minuit will try to fingpts points
on the contour (default 20). If only two parameters are \dgiat the time, it is not necessary to specify
their numbers. To calculate more than one contour, it issssng toSET ERR to the appropriate value
and issue th&NContour command for each contour desired.

RELease <parno> [parno] ... [parno]

If <parno> is the number of a previously variable parameter which has bixed by a command:
FIX <parmo>, then that parameter will return to variable status. Otligsa warning message is printed
and the command is ignored. Note that this command operatgn parameters which were at one
time variable and have be@éiXed. It cannot make constant parameters variable; that neudbhe by
redefining the parameter withPARameters command.

REStore [codel]

If no [code] is specified, this command restores all previousiyed parameters to variable status. If
[code] =1, then only the last parametBiXed is restored to variable status. If code is neither zero nor
one, the command is ignored.

RETurn

Signals the end of a data block, and instructs Minuit to retiar the program which called it. The
RETurn command first causes Minuit fALL FCN with IFLAG=3, in order to allowFCN to perform
any calculations associated with the final fitted paramed@res, unless aALL FCN 3 command has
already been executed at the curreelf value. Then it executes a FortrRETURN.

SAVe

Causes the current parameter values to be saved on a filehrmgoomat that they can be read in again
as Minuit parameter definitions. If the covariance matriisesy it is also output in such a format. The
unit number is by default 7, or that specified by the user inchisto MINTIO or MNINIT. The user is
responsible for opening the file previous to issuing 3h&E command (except where this can be done
interactively).

22 Chapter 4. Minuit Commands

SCAn [parno] [numpts] [from] [to]

Scans the value of the user function by varying parametetbeuiiparno], leaving all other parameters
fixed at the current value. lfparno] is not specified, all variable parameters are scanned iresequ
The number of point§numpts] in the scan is 40 by default, and cannot exceed 100. The rdrtpe o
scan is by default 2 standard deviations on each side of thertubest value, but can be specified as from
[from] to [to]. After each scan, if a new minimum is found, the best parametieies are retained
as start values for future scans or minimizations. The cuegelting from each scan is plotted on the
output unit in order to show the approximate behaviour offtmetion. This command is not intended
for minimization, but is sometimes useful for debuggingubker function or finding a reasonable starting
point.

SEEk [maxcalls] [devs]

Causes a Monte Carlo minimization of the function, by chegsandom values of the variable parame-
ters, chosen uniformly over a hypercube centered at themiipest value. The region size is by default
3 standard deviations on each side, but can be changed Lfysppthe value of[devs].

SET BATch

Informs Minuit that it is running in batch mode.

SET EPSmachine <accuracy>

Informs Minuit that the relative floating point arithmetioggision is<accuracy>. Minuit determines the
nominal precision itself, but th@ET EPS command can be used to override Minuit's own determination,
when the user knows that tHeN function value is not calculated to the nominal machine emu
Typical values okaccuracy> are between0—> and10~ 4.

SET ERRordef <up>

Sets the value dfP (default value= 1.), defining parameter errors. Minuit defiparameter errors as
the change in parameter value required to change the funeioe byUP. Normally, for chisquared fits
UP=1, and for negative log likelihoodjP=0.5.

SET GRAdient [force]

Informs Minuit that the user function is prepared to calteligs own first derivatives and return their val-
ues in the arragRAD whenIFLAG=2 (see specification of the functi®ttN). If [force] is not specified,
Minuit will calculate theFCN derivatives by finite differences at the current point anchpare with the
user’s calculation at that point, accepting the user'seahnly if they agree. Ifforcel=1, Minuit does
not do its own derivative calculation, and uses the dexieatcalculated iECN.

SET INPut [unitno] [filename]

Causes Minuit, in data-driven mode only, to read subsequ@ntmands (or parameter definitions or title)
from a different input file. If nofunitno] is specified, reading reverts to the previous input file, &g
that there was one. Ifunitno] is specified, and that unit has not been opened, then Mirtaihats to
open the file[filename] if a name is specified. If running in interactive mode dfdlename] is not
specified andunitno] is not opened, Minuit prompts the user to enter a file namé.elfitordREWIND

is added to the command (noteo blanks betweenINPUT and REWIND), the file is rewound before
reading.Note that this command is implemented in standard Fortraarfd the results may depend on
the operating system; for example, if a filename is given uMti§CMS, it must be preceeded by a slash.

23

SET INTeractive
Informs Minuit that it is running interactively.
SET LIMits [parno] [lolim] [uplim]

Allows the user to change the limits on one or all parametdrso arguments are specified, all limits
are removed from all parameters. [parno] alone is specified, limits are removed from parameter
[parno]. If all arguments are specified, then paramdiesirno] will be bounded betweelilolim]

and [uplim]. Limits can be specified in either order, Minuit will take thmaller as[1olim] and the
larger as[uplim]. However, if[1olim] is equal to[uplim], an error condition results.

SET LINesperpage

Sets the number of lines that Minuit thinks will fit on one pagfeoutput. The default value is 24 for
interactive mode and 56 for batch.

SET NOGradient

The inverse oBET GRAdient, instructs Minuit not to use the first derivatives calcutby the user in
FCN.

SET NOWarnings

Supresses Minuit warning messagéBT WARnings is the default.
SET OUTputfile <unitno>

Instructs Minuit to write further output to untunitno>.
SET PAGethrow <integer>

Sets the carriage control character for “new pagelitateger>. Thus the value 1 produces a new page,
and 0 produces a blank line, on some output devicesT@eef page command).

SET PARameter <parno> <value>

Sets the value of parameteparno> to <value>. The parameter in question may be variable, fixed, or
constant, but must be defined.

SET PRIntout <level>

Sets the print level, determining how much output Minuitlyiloduce. The allowed values and their
meanings are displayed afteBB0w PRInt command, and are currenfijlevel>=:

-1 no output except fror8HOW commands
0 minimum output (no starting values or intermediate re}ults
1 default value, normal output
2 additional output giving intermediate results.
3

maximum output, showing progress of minimizations.

Note: See also th8ET WARnings command.

24 Chapter 4. Minuit Commands

SET RANdomgenerator <seed>

Sets the seed of the random number generator ussiEin This can be any integer between 10 000 and
900 000 000, for example one which was output froBHa8w RANdom command of a previous run.

SET STRategy <level>

Sets the strategy to be used in calculating first and secamghtiees and in certain minimization meth-
ods. In general, low values aflevel> mean fewer function calls and high values mean more reliable
minimization. Currently allowed values are 0, 1 (defawdd 2.

SET TITle

Informs Minuit that the next input line is to be considered thew) title for this task or sub-task. This
is for the convenience of the user in reading his output. Thimmand is available only in data-driven
mode; in Fortran-callable mode uS&LL MNSETI.

SET WARNings

Instructs Minuit to output warning messages when suspéctamnditions arise which may indicate unre-
liable results. This is the default.

SET WIDthpage
Informs Minuit of the output page width. Default values a€ef8r interactive jobs and 120 for batch.
SHOwW XXXX

All SET XXXX commands have a correspondsifpw XXXX command. In addition, theH0w commands
listed starting here have no correspondBETL command for obvious reasons. The full list $H0w
commands is printed in response to the commiRiP SHOw.

SHOw CORrelations

Calculates and prints the parameter correlations fromittoe matrix.
SHOw COVariance

Prints the (external) covariance (error) matrix.
SHOw ElGenvalues

Calculates and prints the eigenvalues of the covariancexmat
SHOw FCNvalue

Prints the current value @fCN.
SIMplex [maxcalls] [tolerance]

Performs a function minimization using the simplex methé#lelder and Mead. Minimization termi-
nates either when the function has been called (approxiy)dieaxcalls] times, or when the estimated
vertical distance to minimumEDM) is less than[tolerance]. The default value oftolerance] is
0.1xUP (SeeSET ERR).

25

STAndard

Causes Minuit to execute the Fortran instructisd.. STAND whereSTAND is a subroutine supplied by
the user.

STOP

Same agXIT.
TOPofpage

Causes Minuit to write the character specified iBEZ PAGethrow command (default = 1) to column
1 of the output file, which may or may not position your outpwgdium to the top of a page depending
on the device and system. This command can be expected topsaplerly only for printed output,
unfortunately it does not solve the IBM terminal problem.

Chapter 5: How to get the right answer from Minuit.

The goal of Minuit — to be able to minimize and analyze parametrors for all possible user functions
with any number of variable parameters — is of course imbbs$o realise, even in principle, in a finite
amount of time. In practice, some assumptions must be maolg #fee behaviour of the function in
order to avoid evaluating it at all possible points. In tHisypter we give some hints on how the user can
help Minuit to make the right assumptions.

5.1 Which Minimizer to Use.

One of the historically interesting advantages of Minuithat it was probably the first minimization
program to offer the user a choice of several minimizatigoathms. This could be taken as a reflection
of the fact that none of the algorithms known at that time vgered enough to be universal, so users were
encouraged to find the one that worked best for them. Since éhgorithms have improved considerably,
but Minuit still offers several, mostly so that old userslwibt feel cheated, but also to help the occasional
user who does manage to defeat the best algorithms. Minuirdly offers five commands which can
be used to find a smaller function value, in addition to a felent, likeMINOS and IMPROVE, which

will retain a smaller function value if they stumble on oneexpectedly (or, in the case @MPROVE,
hopefully). The commands which can be used to minimize are:

5.1.1 MIGRAD

This is the best minimizer for nearly all functions. It is ariedle-metric method with inexact line
search, a stable metric updating scheme, and checks fdivpedéfiniteness. It will run faster if you
SET STRATEGY 0 and will be more reliable if yolET STRATEGY 2 (although the latter option may
not help much). Its main weakness is that it depends heavilkrmwledge of the first derivatives,
and fails miserably if they are very inaccurate. If first datives are a problem, they can be calculated
analytically insiderCN (see elsewhere in this writeup) or if this is not feasible,uker can try to improve
the accuracy of Minuit's numerical approximation by adjugtvalues using th€ET EPS and/orSET
STRATEGY commands (see Floating Point Precision 887 STRATEGY).

5.1.2 MINIMIZE

This is equivalent t?IIGRAD, except that iMIGRAD fails, it reverts toSIMPLEX and then call$1IGRAD

again. This is what the oldIGRAD command used to do, but it was removed fromMheéRAD command
so that users would have a choice, and because it is seldony aka to calSIMPLEX whenMIGRAD has
failed (there are of course exceptions).

5.1.3 SCAN

This is not intended to minimize, and just scans the functiore parameter at a time. It does however
retain the best value after each scan, so it does some saghty primitive minimization.

5.1.4 SEEK

We have retained this Monte Carlo search mainly for sentisdeeasons, even though the limited experi-
ence with it is less than spectacular. The method now incatps a Metropolis algorithm which always
moves the search region to be centred at a new minimum, angtlability ¢(—F/#min) of moving the

26

5.2. Floating point Precision 27

search region to a higher point with function valkie This gives it the theoretical ability to jump through
function barriers like a multidimensional quantum mechahiunneler in search of isolated minima, but
it is widely believed by at least half of the authors of Mintligt this is unlikely to work in practice
(counterexamples are welcome) since it seems to depelchltyiton choosing the right average step
size for the random jumps, and if you knew that, you woulde&d Minuit.

5.1.5 SIMPLEX

This genuine multidimensional minimization routine is aky much slower thamIGRAD, but it does
not use first derivatives, so it should not be so sensitivéaégprecision of th&CN calculations, and is
even rather robust with respect to gross fluctuations inuhetion value. However, it gives no reliable
information about parameter errors, no information whestso about parameter correlations, and worst
of all cannot be expected to converge accurately to the noimirim a finite time. Its estimate @&DM is
largely fantasy, so it would not even know if it did converge.

5.2 Floating point Precision

Minuit figures out at execution time the precision with whitkvas compiled, and assumes thram
provides about the same precision. That means not just tigghl@f the numbers used and returned by
FCN, but the actual mathematical accuracy of the calculatidhs. section on Floating point Precision in
Chapter One describes what to do if this is not the case.

5.3 Parameter Limits

Putting limits (absolute bounds) on the allowed values fgiven parameter, causes Minuit to make a
non-linear transformation of its own internal parametdu&a to obtain the (external) parameter values
passed t&CN. To understand the adverse effects of limits, see “The Toamstion for Parameters with
Limits” in Chapter 1. Basically, the use of limits should h@@ed unless needed to keep the parameter
inside a desired range.

If parameter limits are needed, in spite of the effects diesdrin Chapter One, then the user should be
aware of the following techniques to alleviate problemssealby limits:

5.3.1 Getting the Right Minimum with Limits.

If MIGRAD converges normally to a point where no parameter is near bitelonits, then the existence
of limits has probably not prevented Minuit from finding thght minimum. On the other hand, if one
or more parameters is near its limit at the minimum, this mapécause the true minimum is indeed at
a limit, or it may be because the minimizer has become “bldtlt a limit. This may normally happen
only if the parameter is so close to a limit (internal valuaatodd multiple o&% that Minuit prints a
warning to this effect when it prints the parameter values.

The minimizer can become blocked at a limit, because at 4 timi derivative seen by the minimizer
OF /0Py is zero no matter what the real derivat€'/0 Py, is.

OF OF OPw, OF

p— pu— p— 0
8Pint 6P ext 6innt aP ext

For a stepping method (likeéIMPLEX) this seldom poses any problem, but a method based on dezvat
(MIGRAD) may become blocked at such a value. If this happens, it mayebessary to move the value

28 Chapter 5. How to get the right answer from Minuit.

of the parameter in question a significant distance fromithi¢ (with SET PARam) and restart the mini-
mization, perhaps with that parameter fixed temporarily. aiéeinvestigating ways to induce Minuit to
extricate itself from such situations automatically, s not so obvious as it seems, and for the moment
must sometimes be done by hand.

5.3.2 Getting the right parameter errors with limits.

In the best case, where the minimum is far from any limits, Wtinvill correctly transform the error
matrix, and the parameter errors it reports should be atrarad very close to those you would have
got without limits. In other cases (which should be more campsince otherwise you wouldn't need
limits), the very meaning of parameter errors becomes proatic. Mathematically, since the limit is
an absolute constraint on the parameter, a parameter ahitdhhs no error, at least in one direction.
The error matrix, which can assign only symmetric errorentbecomes essentially meaningless. On
the other hand, th#INOS analysis is still meaningful, at least in principle, as lagMIGRAD (which

is called internally byMINOS) does not get blocked at a limit. Unfortunately, the user t@asontrol
over this aspect of thBINOS calculation, although it is possible to get enough prinfooin theMINOS
command to be able to determine whether the results arélesta not.

5.4 Fixing and Releasing Parameters

When Minuit needs to be guided to the “right” minimum, oftére thest way to do this is with tHerx
andRELEASE commands. That is, suppose you have a problem with ten freengéers, and when you
minimize with respect to all at once, Minuit goes to an unjtgissolution characterized by an unphysical
or unwanted value of parameter number four. One way to ahisdg toFIX parameter four at a “good”
value (not necessarily the best, since you presumably &onil that yet), and minimize with respect to
the others. TheRELEASE 4 and minimize again. If the problem admits a “good” physicdlison, you
will normally find it this way. If it doesn’t work, you may seehat is wrong by the following sequence
(wherexxx is the expected physical value for parameter four):

SET PARAM 4 xxx
FIX 4

MIGRAD

RELEASE 4

SCAN 4

where theSCAN command gives you a picture 8EN as a function of parameter four alone, the others

being fixed at their current best values. If you suspect tfiiedlity is due to parameter five, then add the
command

CONTOUR 4 5
to see a two-dimensional picture.
5.5 Interpretation of Parameter Errors

There are two kinds of problems that can arise: Tél@bility of Minuit’'s error estimates, and their
statistical interpretation, assuming they are accurate.

5.5. Interpretation of Parameter Errors 29

5.5.1 Statistical Interpretation.

For discussuion of basic concepts, such as the meaning @ld¢hments of the error matrix, parabolic
VersusMINOS errors, the appropriate value foP (seeSET ERRdef), and setting of exact confidence
levels, see (in order of increasing complexity and compkets):

— “Interpretation of the Errors on Parameters’see Part 3 of this write-up.
— “Determining the Statistical Significance of ExperimeriRadsults4].
— “Statistical Methods in Experimental Physid$].

5.5.2 The Reliability of Minuit Error Estimates.

Minuit always carries around its own current estimates efgarameter errors, which it will print out on
request, no matter how accurate they are at any given pdim¢iexecution. For example, at initialization,
these estimates are just the starting step sizes as spéxjified user. After #IGRAD or HESSE step, the
errors are usually quite accurate, unless there has beeblaipr. Minuit, when it prints out error values,
also gives some indication of how reliable it thinks they. afF®r example, those marke@URRENT
GUESS ERROR’ are only working values not to be believed, alkPPROXIMATE ERROR’ means that
they have been calculated but there is reason to believehinatmay not be accurate. If no mitigating
adjective is given, then at least Minuit believes the eresesaccurate, although there is always a small
chance that Minuit has been fooled. Some visible signs thatitimay have been fooled are:

— Warning messages produced during the minimization or arralysis.

— Failure to find new minimum.

— Value ofEDM too big. For a “normal” minimization, afté4IGRAD, the value oEDM is usually more
than three orders of magnitude smaller ti@{the SET ERRordef), unless a looser tolerance has
been specified.

— Correlation coefficients exactly equal to zero, unlessesparameters are known to be uncorrelated
with the others.

— Correlation coefficients very close to one (greater th88)0.This indicates both an exceptionally
difficult problem, and one which has been badly parametrizeithat individual errors are not very
meaningful because they are so highly correlated.

— Parameter at limit. This condition, signalled by a Minu&ming message, may make both the
function minimum and parameter errors unreliable. Seemebt3.2,Getting the right parameter
errors with limits.

The best way to be absolutely sure of the errors, is to usefiaddent” calculations and compare them,
or compare the calculated errors with a picture of the famcti possible. For example, if there is only
one free parameter, the commashN allows the user to verify approximately the function cunvat
Similarly, if there are only two free parameters, W TOUR. To verify a full error matrix, compare
the results oMIGRAD with those (calculated afterward) BESSE, which uses a different method. And
of course the most reliable and most expensive techniquehwhust be used if asymmetric errors are
required, iMINOS.

30 Chapter 5. How to get the right answer from Minuit.

5.6 Convergence in MIGRAD, and Positive-definiteness.

MIGRAD uses its current estimate of the covariance matrix of thetfon to determine the current search
direction, since this is the optimal strategy for quadréticctions and “physical” functions should be
quadratic in the neighbourhood of the minimum at least. Hagch directions determined By GRAD
are guaranteed to be downhill only if the covariance masipasitive-definite, so in case this is not
true, it makes a positive-definite approximation by addingappropriate constant along the diagonal
as determined by the eigenvalues of the matrix. Theorstidhle covariance matrix for a “physical”
function must be positive-definite at the minimum, althoitghay not be so for all points far away from
the minimum, even for a well-determined physical problermherefore, ifMIGRAD reports that it has
found a non-positive-definite covariance matrix, this mayatsign of one or more of the following:

— A non-physical region. On its way to the minimumMIGRAD may have traversed a region which
has unphysical behaviour, which is of course not a seriooisl@m as long as it recovers and leaves
such a region.

— An underdetermined problem. If the matrix is not positive-definite even at the minimumisth
may mean that the solution is not well-defined, for exampée there are more unknowns than
there are data points, or that the parametrization of theffitains a linear dependence. If this is
the case, then Minuit (or any other program) cannot solve pooblem uniquely, and the error
matrix will necessarily be largely meaningless, so the usast remove the underdeterminedness
by reformulating the parametrization. Minuit cannot dcsthiself, but it can provide some hints
(contours, global correlation coefficients, eigenvalugkjch can help the clever user to find out
what is wrong.

— Numerical inaccuracies. It is possible that the apparent lack of positive-definigsnis in fact
only due to excessive roundoff errors in numerical caldores, either inFCN or in Minuit. This
is unlikely in general, but becomes more likely if the numbgfree parameters is very large, or
if the parameters are badly scaled (not all of the same oifderagnitude), and correlations are
also large. In any case, whether the non-positive-defiegeris real or only numerical is largely
irrelevant, since in both cases the error matrix will be liabde and the minimum suspicious.

5.7 Additional Trouble-shooting
When Minuit just doesn’t work, some of the more common caases

— Precision mismatch. Make sure yourFCN has been compiled with the same precision as the
version of Minuit you are using. When usiDQUBLE PRECISION, it is safest to use theMPLICIT
declaration to make sure that everythingp®BLE PRECISION, not just the arguments &fCN
but also the internal variables. Note that depending on dmepciter system used, floating-point
constants may be passed as single precision in subrougjopmeants, even if there is @MPLICIT
DOUBLE PRECISION statement (which is strictly speaking correct since IMBLICIT statement
refers only to variables, not constants). Therefore, istants are used as arguments in subroutine
calls, they must be explicitly of the right precision (foraemple, on Apollo, even 0. is not equal to
0.D0).

If the problem is only one of precision, and not of word lengtismatch, an appropriaBET EPS
command may fix it.

— Trivial bugs in FCN. The possibilities for Fortran bugs are numerous. Probddgymost common
among physicists inexperienced in Fortran is the confubetweenREAL and INTEGER types,

5.7. Additional Trouble-shooting 31

which you can sometimes get away with, but not always. [Famgde, ifA andB are REAL
variables, the Fortran statement= 2xB is not good programming, but happens to do what the
user probably intended, whereas the statemeatB + 2/3 almost certainly will not do what the
user intended.] Minuit can spot some trivial bugs itself]l @&sues a warning when it detects an
unusualFCN behaviour. Such a warning should be taken seriously.

Minuit also offers some tools (especiaBgAN) which can help the user to find trivial bugs.

— Overwriting in a user routine. Overwriting most often occurs when setting the values otcallo
array or an array ii€OMMON, and elements outside the dimensions of the array are addrellost
computer systems do not detect this error unless you attesnptite into a protected area of
memory, and of course Minuit is also helpless, especiaWiifuit itself is being overwritten. The
symptoms of user overwriting may be almost anything, iniclgdunusual behaviour of Minuit
itself. The effects depend critically on where instruct@nd data are loaded in memory, so they
may change completely if the same program is recompiled diffierent compiler options or
reloaded in a different sequence, even though the compitktcader are not at fault.

— Changing the values of input arguments.In subroutineFCN, for example, the argument® AR
and IFLAG, as well as the values of the parameters themselves, arérmmlyto FCN and their
values should not be changed insitlgN. Minuit is now protected against this in principle, since
the user only gets a copy of the value, not the actual addfeb® dnternal Minuit variable, but
still this is a symptom of misunderstanding by the user.

If you really want to change the number of variable paransetbis must be done with commands
like FIX andRELEASE, by redefining parameters using comm&a&AMETER or CLEAR.

Similarly, if a parameter takes on an unwanted value, it @oliho good to change its value inside
FCN: In the best case, Minuit won'’t see your improved value, anithé worst case, it will produce
unpredictable results. To set a parameter to a certain vasgethe commanglET PARam, and to
keep it within certain bounds, use the comma&ad LIMits. If the parameter must obey more
complicated constraints, you must find a trick such as adaipgnalty value t&CN outside of the
physical region, to force it back to where you want it.

— An ill-posed problem. For questions of parameter dependence, see the discudsive an
postive-definiteness. Other mathematical problems whish arise are:excessive numerical
roundoff — be especially careful of exponential and factorial fumas which get big very quickly
and lose accuracystarting too far from the solution — the function may have unphysical lo-
cal minima, especially at infinity in some variabldéagorrect normalization — in likelihood
functions, the probability distributions must be normedizor at least have an integral which is
independent of the values of the variable parameters.

— Abug in Minuit. This is extremely unlikely, but it did happen once. If a buguspected, and all
other possible causes can be eliminated, please try to samyaf the input and output files, list-
ing of FCN, and other information that may be relevant, and send thefada. James@cern. ch.

Chapter 6: A complete example

We give here one full example of a real fit, performed first itchadata-driven mode, then the same fit
performed by Fortran calls.

6.1 A data-driven fit

The example job given here is set up for batch processing. OPREE statements assign the input and
output files, and are somewhat computer-dependent (these fere are for a Vax). On many systems,
it may be more convenient (or necessary) to perform the fdggaments in JCL rather than from the
Fortran, but whatever the user decides, the files must besdpamd the unit numbers communicated to
Minuit before the call ta{INUIT.

The same job could be run interactively, in which case thetimd output files would be assigned to
the terminal, and the “user’s data” listed below, insteadarhing from a file, would be typed in directly
to the terminal.

The User's main program

PROGRAM DSDQ

EXTERNAL FCNKO

OPEN (UNIT=5,FILE=’DSDQ.DAT’,STATUS=’0LD’)

OPEN (UNIT=6,FILE=’DSDQ.0UT’,STATUS=’NEW’,FORM=’>FORMATTED’)

CcC CALL MINTIO(5,6,7) ! Not needed, default values
CALL MINUIT(FCNKO,O0) ! User routine is called FCNKO
STOP
END

The User’'s FCN

SUBROUTINE FCNKO(NPAR,GIN,F,X,IFLAG,FUTIL)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
REAL THPLUI, THMINI

DIMENSION X(*),GIN(*)

C this subroutine does not use FUTIL

PARAMETER (MXBIN=50)

DIMENSION THPLU(MXBIN),THMIN(MXBIN),T(MXBIN),
+ EVTP (MXBIN) ,EVTM(MXBIN)
DATA NBINS,NEVTOT/ 30,250/
DATA (EVTP(IGOD),IGOD=1,30)

+ /11., 9., 13., 13., 17., 9., 1., 7., 8., 9.,
+ 6., 4., 6., 3., 7., 4., ., 3., 8., 4.,
+ 6., 5., 7., 2., 7., 1., 4., 1., 4., 5./
DATA (EVTM(IGOD),IGOD=1,30)
+ /0., 0., 0., 0., 0., 0., 0., O., 1., 1.,
+ 0., 2., 1., 4., 4., 2., 4., 2., ., .,
+ 2., 3., 7., 2., 3., 6., 2., 4., 1., 5./
C
XRE = X(1)
XIM = X(2)
DM = X(5)

GAMS = 1.0/X(10)
GAML = 1.0/X(11)

32

6.1. A data-driven fit

GAMLS = 0.5%(GAML+GAMS)
IF (IFLAG .NE. 1) GO TO 300
generate random data

STHPLU = 0.
STHMIN = 0.
DO 200 I= 1, NBINS
T(I) = 0.1*REAL(I)
TI = T(I)
EHALF = EXP(-TI*GAMLS)
TH = ((1.0-XRE)**2 + XIM**2) * EXP(-TI*GAML)
TH = TH + ((1.0+XRE)**2 + XIM*%2) * EXP(-TI*GAMS)
TH = TH - 4. 0*XIM*SIN(DM*TI) * EHALF
STERM = 2.0%(1.0-XRE**2-XIM**2)*C0S(DM*TI) * EHALF
THPLU(I) = TH + STERM
THMIN(I) = TH - STERM
STHPLU = STHPLU + THPLU(I)
STHMIN = STHMIN + THMIN(I)
200 CONTINUE
NEVPLU = REAL(NEVTOT) * (STHPLU/ (STHPLU+STHMIN))
NEVMIN = REAL(NEVTOT) * (STHMIN/ (STHPLU+STHMIN))
WRITE (6,’(A)’) ° LEPTONIC K ZERO DECAYS’
WRITE (6,’(A,3I10)’) ° PLUS, MINUS, TOTAL=’,NEVPLU,NEVMIN,NEVTOT
WRITE (6,’(A)’)
+ 0 TIME THEOR+ EXPTL+ THEOR- EXPTL-’
SEVIP = 0.
SEVIM = 0.
DO 250 I= 1, NBINS
THPLU(I) = THPLU(I)*REAL(NEVPLU) / STHPLU
THMIN(I) = THMIN(I)*REAL(NEVMIN) / STHMIN
THPLUI = THPLU(I)

cccce remove the CCC to generate random data
ccc CALL POISSN(THPLUI,NP,IERROR)
cce EVTP(I) = NP

SEVTIP = SEVIP + EVTP(I)
THMINI = THMIN(I)

CccC CALL POISSN(THMINI,NM,IERROR)
CcCC EVIM(I) = NM

C

SEVIM = SEVIM + EVTM(I)

IF (IFLAG .NE. 4)
+ WRITE (6,’(1X,5G12.4)’) T(I),THPLU(I),EVTP(I),THMIN(I),EVTM(I)

250 CONTINUE
WRITE (6, ’(A,2F10.2)’) ’ DATA EVTS PLUS, MINUS=’, SEVTP,SEVTM
calculate chisquare
300 CONTINUE

CHISQ = 0.

STHPLU = 0.

STHMIN = 0.

DO 400 I= 1, NBINS

TI = T(I)

EHALF = EXP(-TI*GAMLS)

TH = ((1.0-XRE)**2 + XIM**2) * EXP(-TI*GAML)

TH = TH + ((1.0+XRE)**2 + XIM*%2) * EXP(-TI*GAMS)

TH = TH - 4. 0*XIM*SIN(DM*TI) * EHALF

STERM = 2.0%(1.0-XRE**2-XIM**2)*C0S(DM*TI) * EHALF

THPLU(I) = TH + STERM

THMIN(I) = TH - STERM

STHPLU = STHPLU + THPLU(I)

33

34

STHMIN = STHMIN + THMIN(I)
400 CONTINUE

THP
THM
EVP
EVM
IF

= 0.

= 0.

= 0.

= 0.

(IFLAG .NE. 4) WRITE (6,’(1HO,10X,A,20X,A)°’)

+ ’POSITIVE LEPTONS’,’NEGATIVE LEPTONS’

IF
+
+

DO
THP
THM
THP
THM
EVP
EVM
C Sum ov
IF

END
IF

END

(IFLAG .NE. 4) WRITE (6,’(A,3X,A)?)
’ TIME THEOR EXPTL CHISQ’,
’ TIME THEOR EXPTL CHISQ’

450 I= 1, NBINS
LU(I) = THPLU(I)*SEVTP / STHPLU

IN(I) = THMIN(I)*SEVTM / STHMIN

= THP + THPLU(I)
THM + THMIN(I)

= EVP + EVTP(I)

= EVM + EVIM(I)
er bins until at least four events found
(EVP .GT. 3.) THEN
CHI1 = (EVP-THP)**2/EVP

CHISQ = CHISQ + CHI1

IF (IFLAG .NE. 4)

WRITE (6,’(1X,4F9.3)’) T(I),THP,EVP,CHI1

THP = 0.

EVP = 0.
IF
(EVM .GT. 3) THEN

CHI2 = (EVM-THM)**2/EVM
CHISQ = CHISQ + CHI2
IF (IFLAG .NE. 4)
WRITE (6,°’(42X,4F9.3)°) T(I),THM,EVM,CHI2
THM = 0.
EVM = 0.
IF

450 CONTINUE
F = CHISQ
RETURN
END

set title

The user’s data to drive Minuit.

FIT DELTA S/ DELTA Q RULE TO LEPTONIC K ZERO DECAYS
parameters

1 ’Real(X)’ 0. .1

2 ’Imag(X)’ 0. .1

5 ’Delta

M’ .5635 .01

10 ’K Short LT’ .892
11 °K Long LT’ 518.3

fix 5
migr
print O

set print O

minos

Chapter 6. A complete example

6.2. The same example in Fortran-callable mode. 35

restore

migrad

minos

set param 5 0.535
fix b

contour 1 2

stop

6.2 The same example in Fortran-callable mode.
The program below takes the place of the data in the abovepgam
The User’s main program and subroutine

PROGRAM DSDQ

Minuit test case. Fortran-callable.

Fit randomly-generated leptonic KO decays to the
time distribution expected for interfering K1 and K2,
with free parameters Re(X), Im(X), DeltaM, and GammaS.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

EXTERNAL FCNKO

cC OPEN (UNIT=6,FILE=’DSDQ.0UT’,STATUS=’NEW’,FORM=’FORMATTED’)
DIMENSION NPRM(5),VSTRT(5),STP(5),ARGLIS(10)
CHARACTER*10 PNAM(5)

QaaaQ

DATA NPRM / 1 , 2 , 5 s 10 , 11 /
DATA PNAM /’Re(X)’, ’Im(X)’, ’Delta M’,’T Kshort’,’T Klong’/
DATA VSTRT/ 0. , 0. , .635 .892 , 518.3 /
DATA STP / 0.1, 0.1, 0.1 , 0. , 0. /
C Initialize Minuit, define I/0 unit numbers
CALL MNINIT(5,6,7)
C Define parameters, set initial values
ZERO = 0.

DO 11 I=1, 5
CALL MNPARM(NPRM(I) ,PNAM(I),VSTRT(I),STP(I),ZERO,ZERO,IERFLG)
IF (IERFLG .NE. 0) THEN
WRITE (6,’(A,I)’) °’ UNABLE TO DEFINE PARAMETER NO.’,I
STOP
ENDIF
11 CONTINUE

CALL MNSETI(’Time Distribution of Leptonic KO Decays’)
C Request FCN to read in (or generate random) data (IFLAG=1)
ARGLIS(1) = 1.
CALL MNEXCM(FCNKO, ’CALL FCN’, ARGLIS ,1,IERFLG)

ARGLIS(1) = 5.
CALL MNEXCM(FCNKO,’FIX’, ARGLIS ,1,IERFLG)
ARGLIS(1) = 0.
CALL MNEXCM(FCNKO,’SET PRINT’, ARGLIS ,1,IERFLG)
CALL MNEXCM(FCNKO,’MIGRAD’, ARGLIS ,0,IERFLG)
CALL MNEXCM(FCNKO,’MINOS’, ARGLIS ,0,IERFLG)
CALL PRTERR
ARGLIS(1) = 5.
CALL MNEXCM(FCNKO,’RELEASE’, ARGLIS ,1,IERFLG)
CALL MNEXCM(FCNKO,’MIGRAD’, ARGLIS ,0,IERFLG)
CALL MNEXCM(FCNKO,’MINOS’, ARGLIS ,0,IERFLG)

36 Chapter 6. A complete example

ARGLIS(1) = 3.

CALL MNEXCM(FCNKO,’CALL FCN’, ARGLIS , 1,IERFLG)
CALL PRTERR

CALL MNEXCM(FCNKO,’STOP ’, 0,0,IERFLG)

STOP

END

SUBROUTINE PRTERR
C a little hand-made routine to print out parameter errors
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
C find out how many variable parameters there are
CALL MNSTAT(FMIN,FEDM,ERRDEF,NPARI ,NPARX,ISTAT)
C and their errors
DO 50 I= 1, NPARI
CALL MNERRS(-I,EPLUS,EMINUS,EPARAB,GLOBCC)
WRITE (6,45) I,EPLUS,EMINUS,EPARAB,GLOBCC
45 FORMAT (5X,I5,4F12.6)
50 CONTINUE
RETURN
END

The FCN is exactly the same in Fortran-callable mode as a-daven mode.

Chapter 7: Interpretation of the errors on Minuit parameter s

It often happens that the solution of a minimization problesimg Minuit is itself straightforward, but the
calculation or interpretation of the resulting parametecartainties is considerably more complicated.
The purpose of this chapter is to clarify the most commonlyoentered difficulties in parameter error
determination. These difficulties may arise in connectiath &ny fitting program, are discussed here
with Minuit terminology.

The most common causes of misinterpretation may be groupedhiree categories:

1 Proper normalization of the user-supplied chi-squareketiiood function, and appropriaB&ROR
DEF.

2 Non-linearities in the problem formulation, leading tofeient errors being calculated by different
techniques, such &S GRAD, HESSE andMINOS.

3 Multiparameter error definition and interpretation.
All these topics are discussed in some detail in Eadie &]ahhich may be consulted for further details.
7.1 Function normalization and ERROR DEF

In order to provide for full generality in the user-defineahdtion value, the user is allowed to define a
normalization factor known internally a® and defined by the Minuit user on 8RROR DEF command
card. The default value is one. The Minuit error on a paramistdefined as the change of parameter
which would produce a change of the function value equaptar his is the most general way to define
the error, although in statistics it is more usual to definia tierms of the second derivative of thé
function — with respect to the parameter in question. In thekest linear case (when the function is
exactly parabolic at the minimum), the value=1.0 corresponds to defining the error as the inverse of
the second derivative at the minimum. The fact that Minuiireks the error in terms of a function change
does not mean that it always calculates such a function ehdndeed it sometimes$lESSE) calculates
the second derivative matrix and inverts it, assuming alqmiabehaviour. This distinction is discussed
in section 7.2.

The purpose of defining errors by function changes is thiéefo

1 to preserve its meaning in the non-parabolic case (se@retR);

2 to allow generality when the user-defined function is notiastuare or likelihood, but has some
other origin;

3 to allow calculation not only of “one-standard deviationfags, but also two or more standard
deviations, or more general 'confidence regions’, espgdéiathe multiparameter case (see section
7.3).

7.1.1 Chi-square normalization

If the user’s function valud" is supposed to be a chisquare, it must of course be propentyatiaed.
That is, the “weights” must in fact correspond to the onexdsémd-deviation errors on the observations.
The most general expression for the chi-square of the form (see [5], p.163):

X° = (wi —yi(a)Vij(z; — y;(a))

i3

37

38 Chapter 7. Interpretation of the errors on Minuit parameser

wherez is the vector of observationg(a) is the vector of fitted values (or theoretical expressioms fo
them) containing the variable fit parameters&ndV is the inverse of the error matrix of the observations
x, also known as the covariance matrix of the observations.

Fortunately, in most real cases the observatiersge statistically independent of each other (e.g., the
contents of the bins of a histogram, or measurements of paointa trajectory), so the matrix is
diagonal only. The expression fg# then simplifies to the more familiar form:

2 (z; — yz’(a))Q
X = Z o2
i 7
wheree? is the inverse of the diagonal element 6f the square of the error on the corresponding
observationz. In the case where the are integer numbers of events in an unweighted histogram, fo

example, the? are just equal to the x (or to the y, see [5], pp.170-171).

The minimization ofy? above is sometimes callegieighted least squaresn which case the inverse
quantitiesl /e? are called the weights. Clearly this is simply a differentravéor the same thing, but
in practice the use of these words sometimes means thattérprietation o> as variances or squared
errors is not straightforward. The word weight often impli@at only the relative weights are known
(“point two is twice as important as point one”) in which cdkere is apparently an unknown overall
normalization factor. Unfortunately the parameter eraansing out of such a fit will be proportional to
this factor, and the user must be aware of this in the forrauiadf his problem.

The e? may also be functions of the fit parametergsee [5], pp.170-171). Normally this results in
somewhat slower convergence of the fit since it usually em®e the nonlinearity of the fit. (In the
simplest case it turns a linear problem into a non-linear)adewever, the effect on the fitted parameter
values and errors should be small.

If the user’s chi-square function is correctly normalizkd,should us&P=1.0 (the default value) to get
the usual one standard-deviation errors for the parameter®y one. To get two-standard-dev.eviation
errors, USERROR DEF 4.0, etc., since the chisquare dependance on parameters imaticaéor more
general confidence regions involving more than one paransste section 7.2.

7.1.2 Likelihood normalization

If the user function is a negative log-likelihood functionmust again be correctly normalized, but the
reasons and ensuing problems in this case are quite differm@m the chisquare case. The likelihood
function takes the form (see [5], p. 155):

F ==Y "Inf(x;a)

where eachr: represents in general a vector of observationsathee the free parameters of the fit, and
the functionf represents the hypothesis to be fitted. This funcfionust be normalized:

/f(aci, a)dzidz, ... dx, = constant
that is, the integral of over all observation spacemust be independent of the fit parameters

The consequence of not normalizirfgproperly is usually that the fit simply will not converge, sem
parameters running away to infinity. Strangely enough, #laevof the normalization constant does

7.2. Non-linearities: MIGRAD versus HESSE versus MINOS 39

not affect the fitted parameter values or errors, as can belseéhe fact that the logarithm makes a
multiplicative constant into an additive one, which simghyifts the whole log-likelihood curve and
affects its value, but not the fitted parameter values orerta fact, the actual value of the likelihood at
the minimum is quite meaningless (unlike the chi-squarae)adnd even depends on the units in which
the observation spaaeis expressed. The meaningful quantity is the differencegrdikelihood between
two points in parameter-space, which is dimensionless.

For likelihood fits, the valu&P=0.5 corresponds to one-standard-deviation errors. Or, altieety, F’
may be defined as-2log(likelihood), in which case differences iA’ have the same meaning as for
chi-square an@P=1.0 is appropriate. The two different ways of introducing thetéa of 2 are quite
equivalent in Minuit, and although most people seem tours® . 5, it is perhaps more logical to put the
factor 2 directly intoFCN.

7.2 Non-linearities: MIGRAD versus HESSE versus MINOS

In the theory of statistics, one can show that in the asyritplionit, any of several methods of deter-
mining parameter errors are equivalent and will give theesaesult. Let us for the moment call these
methodsMIGRAD, HESSE, andMINOS (SIMPLEX is a special case). It turns out that the conditlons under
which these methods yield exactly the same errors are @aiftibe following:

1 The model to be fittedy(or f) is exactly a linear function of the fit parametersor
2 The amount of observed data is infinite.

It may happen that (1) is satisfied, in which case you donfiyreseed Minuit, a smaller, simpler, and
faster program would do, since a linear problem can be salwedtly without iterations (see [5], p.
163-165), for example with CERN library prograbSQQR. Nevertheless, it may be convenient to use
Minuit slnce non-linear terms can then be added later ifrddsiwithout major changes to the method.
Condition (2) is of course never satisfied, although in ficadt often happens that there is enough data
to make the problem “almost linear”, that is there is so muatadhat the range of parameters allowed
by the data becomes very small, and any physical functioaus=hlinearly over a small enough region.

The following sections explain the dirrerences betweervéiimus parameter errors given by Minuit.

7.2.1 Errors printed by Minuit

The errors printed by Minuit at any given stage represenbést symmetric error estimates available at
that stage, which may not be very good. For example, at theefitsy toFCN, the user’s step slzes are
given, and these may bear no resemblance at all to propenpteaerrors, although they are supposed to
be order-of-magnltude estimates. After crude minimiziesdEEK or SIMPLEX, a revised error estimate
may be given, but this too is only meant to be an order-or-ntag@ estimate, and must certainly not be
taken seriously as a physical result. Such numbers areyrfainthe internal use of Minuit, which must
after all assume a step size for future minimizations andatére calculations, and uses these “errors”
as a first guess to be modified on the basis of experience.

7.2.2 Errors after MIGRAD (or MINIMIZE)

The minimizing technique currently implementediIGRAD is a stable variation (the “switching” method)
of the Davidon-Fletcher-Powell variable-metric algomithThis algorithm converges to the correct error
matrix as it converges to the function minimum.

40 Chapter 7. Interpretation of the errors on Minuit parameser

This algorithm requires at each step a “working approxiarétiof the error matrix, and a rather good
approximation to the gradient vector at the current besttpdihe starting approximation to the error
matrix may be obtained in different ways, depending on thtustof the error matrix before MIGRAD
is called as well as the value of STRATEGY. Usually it is founde advantageous to evaluate the error
matrix rather carefully at the start point in order to avoidrpature convergence, but in principle even the
unit matrix can be used as a starting approximation. Ustila#yMinuit default is to start by calculating
the full error matrix by calculating all the second derivasi and inverting the matrix. If the user wants
to make sure this is done, he can call HESSE before MIGRAD.

If a unit matrix is taken to start, then the first step will beaisteepest descedirection, which is not
bad, but the estimate of EDM, needed to judge convergendebevipoor. At each successive step,
the information gathered from the change of gradient is tie@aprove the approximation to the error
matrix, without the need to calculate any second derivativeinvert any matrices. The algorithm used
for this updatingis supposed to be the best known, but if there are a lot of highirelated parameters,

it may take many steps before the off-diagonal elementseoétror matrix approach the correct values.
In practice MIGRAD usually yields good estimates of the error matrix, but itas absolutely reliable for
two reasons:

1 Convergence to the minimum may occur “too fast”fidiGRAD to have a good estimate of the error
matrix. In the most flagrant of such cas®&GRAD realizes this and automatically introduces an
additional call toHESSE (described below), informing the user that the covarianag&imis being
recalculated. Since, for variable parameters, there aré: + 1)/2 elements in the error matrix,
the number ofCN calls fromMIGRAD must be large compared with? in order for theMIGRAD
error matrix calculation to be reliable.

2 MIGRAD gathers information about the error matrix as it proceedsed on function values calcu-
lated away from the minimum and assuming that the error megtmearly constant as a function
of the parameters, as it would be if the problem were neanlsali. If the problem is highly non-
linear, the error matrix will depend strongly on the paraar&MIGRAD will converge more slowly,
and the resulting error matrix will at best represent soneeame over the last part of the trajectory
in parameter-space traversedMiyGRAD.

If MIGRAD errors are wrong because of (HESSE should be commanded aftsLGRAD and will give
the correct errors. IfIIGRAD errors are wrong because of (BESSE will help, but only in an academic
sense, since in this case the error matrix is not the whotg stad for proper error calculationINGS
must be used.

As a general rule, anyone seriously interested in the pdesragors should always put at leasiESSE
command after eadlIGRAD (or MINIMIZE) command.

7.2.3 Errors after HESSE

HESSE simply calculates the full second-derivative matrix bytérdifferences and inverts it. It therefore
calculates the error matrix at the point where it happentathen it is called. If the error matrix is not
positive-definite, diagnostics are printed, and an attamptade to form a positive-definite approxima-
tion. The error matrix must be positive-definite at the solu{minimum) for any real physical problem.
It may well not be positive away from the minimum, but mosiaithms including theIIGRAD algorithm
require a positive-definite “working matrix”.

The error matrix produced ESSE is used to calculate what Minuit prints as the parametergrehich
therefore contain the effects due to parameter corretibhe extent of the two-by-two correlations can

7.3. Multiparameter errors 41

be seen from the correlation coefficients printed by Minaiitgd the global correlations (see [5], p. 23)
are also printed. All of these correlation coefficients mestess than one in absolute value. If any of
them are very close to one or minus one, this indicates apsil@ problem with more free parameters
than can be determined by the model and the data.

7.2.4 Errors by MINOS

MINOS is designed to calculate the correct errors in all casegoedy when there are non-linearities as
described above. The theory behind the method is descnibgd, ipp. 204-205 (where “non-parabolic
likelihood” should of course read “non-parabolic log-likeod”, which is equivalent to “nonparabolic
chi-square”).

MINOS actually follows the function out from the minimum to find whet crosses the function value
(minimum +UP), instead of using the curvature at the minimum and assumipgrabolic shape. This
method not only yields errors which may be different fromsth@fHESSE, but in general also different
positive and negative errors (asymmetric error interdalleed the most frequent result for most physical
problems is that the (symmetriBESSE error lies between the positive and negative erroisIaifs. The
difference between these three numbers is one measure dmhknearity of the problem (or rather of
its formulation).

In practice MINOS errors usually turn out to be close to, or somewhat larger éneors derived from the
error matrix, although in cases of very bad behaviour (vithe Idata or ill-posed model) anything can
happen. In particular, it is often not true MINOS that two-standard-deviation erroféP&4) and three-
standard-deviation error§¥=9) are respectively two and three times as big as one-stauldaidtion
errors, as is true by definition for errors derived from th®ematrix (MIGRAD or HESSE).

7.3 Multiparameter errors

In addition to the difficulties described above, a speciakslof problems arise in interpreting errors
when there is more than one free parameter. These problentude separate from those described
above and are really much simpler in principle, althoughractice confusion often arises.

7.3.1 The Error Matrix

The error matrix, also called the covariance matrix, is theise of the second derivative matrix of
the (log-likelihood or chisquare) function with respectit® free parameters, usually assumed to be
evaluated at the best parameter values (the function mmjmurhe diagonal elements of the error
matrix are the squares of the individual parameter erinciding the effects of correlationswith the
other parameters.

The inverse of the error matrix, the second derivative malids as diagonal elements the second partial
derivatives with respect to one parameter at a time. Thesgodal elements are not therefore coupled
to any other parameters, but when the matrix is inverteddihgonal elements of the inverse contain
contributions from all the elements of the second derieativatrix, which is “where the correlations
come from”.

Although a parameter may be either positively or negaticelyelated with another, the effect of corre-
lations is always to increase the errors on the other pasmit the sense that if a given free parameter
suddenly became exactly known (fixed), that would alwaysetese (or at least not change) the errors
on the other parameters. In order to see this effect qutveitg the following procedure can be used to
“delete” one parameter from the error matrix, includingetfects on the other parameters:

42 Chapter 7. Interpretation of the errors on Minuit parameser

1 Invert the error matrix, to yield the second-derivative nxat
2 Remove the row and column of the inverse corresponding tgitles parameter.
3 Re-invert the resulting (smaller) matrix.

This reduced error matrix will have its diagonal elementslén or equal to the corresponding elements
in the original error matrix, the difference representihg effect of knowing or not knowing the true
value of the parameter that was removed at step two. Thiggwwe is exactly that performed by Minuit
when aFIX command is executed. Note that it is not reversible, sinf@rimation has been lost in the
deletion. The Minuit command¥ESTORE andRELEASE therefore cause the error matrix to be considered
lost and it must be recalculated entirely.

7.3.2 MINOS with several free Parameters

TheMINOS algorithm is described in some detail in part 1 of this manti@re we add some supplemen-
tary “geometrical interpretation” for the multidimensaircase.

Let us consider that there are just two free parameters, &wd tthe contour line connecting all points
where the function takes on the valég,;, + UP. (The CONTOUR command will do this for you from
Minuit). For a linear problem, this contour line would be aet ellipse, the shape and orientation of
which are described in [5], p.196 (Fig. 9.4). For our probletrihe contour be as in figure 7.1.MINOS

is requested to find the errors in parameter one (the x-akig)jl find the extreme contour points A
and B, whose x-coordinates, relative to the x-coordinatdh@tminimum (X), will be respectively the
negative and positivBINOS errors of parameter one.

7.3.3 Probability content of confidence regions

For ann-parameter probleMINQOS performs minimizations ifn — 1) dimensions in order to find the
extreme points of the hypercontour of which a two-dimensi@xample is given in figure 7.1, and in
this way takes account of all the correlations with the other1 parameters. However, the errors which

it calculates are still only single-parameter errors, i $kense that each parameter error is a statement
only about the value of that parameter. This is represengedngtrically by saying that the confidence
region expressed by th&NOS error in parameter one is the grey area of figure 7.2, extgrtdimfinity

at both the top and bottom of the figure.

If UP is set to the appropriate one-standard-deviation vales the precise meaning of the confidence
region of figure 7.2 is: “The probability that the true valueparameter one lies between A and B is
68.3%” (the probability of a normally-distributed paraeretying within one std.-dev. of its mean).
That is, the probability content of the grey area in figure i8.88.3%. No statement is made about
the simultaneous values of the other parameter(s), sire@riy area covers all values of the other
parameter(s).

If it is desired to makeimultaneouslystatements about the values of two or more parameters,tthe si
ation becomes considerably more complicated and the pitilgsbget much smaller. The first problem

is that of choosing the shape of the confidence region, sine@®o longer simply an interval on an axis,

but a hypervolume. The easiest shape to express is the bgtmrgle given by:

A < param 1 < B
C < param 2 < D
E < param 3 < F , etc.

7.3. Multiparameter errors 43

>

>
>
>

[o9)
og)

1

> Parameter
A Parameter 1 A

Figure 7.1:MINQOS errors for parameter 1
Figure 7.2:MINOS error confidence region for pa-

rameter 1

This confidence region for our two-parameter example is thg grea in figure 7.3. However, there are
two good reasons not to use such a shape:

1. Some regions inside the hyperrectangle (namely the)rihave low likelihoods, lower than
some regions just outside the rectangle, so the hypergdet@not the optimal shape (does not
contain the most likely points).

2. One does not know an easy way to calculate the probabilibfent of these hyperrectangles
(see [5], p.196-197, especially fig. 9.5a).

For these reasons one usually chooses regions delimiteohitgue's of equal likelihood (hyperellipsoids
in the linear case). For our two-parameter example, sucmfidemce region would be the grey region
in figure 7.4, and the corresponding probability statementThe probability that parameter one and
parameter two simultaneously take on values within the stardard-deviation likelihood contour is
39.3%".

The probability content of confidence regions like thosedsldan figure 7.4 becomes very small as the
number of parametem$PAR increases, for a given value UP. Such probability contents are in fact
the probabilities of exceeding the value for a chisquare function afPAR degrees of freedom, and can
therefore be read off from tables of chisquare. Table 7.agjkie values dfP which yield hypercontours
enclosing given probability contents for given number afjpaeters.

44

Parameter 2

>

Chapter 7. Interpretation of the errors on Minuit parameser

>

Parameter 1

Parameter 2

A

Parameter 1

Figure 7.3: Rectangular confidence region for paigyre 7.4: Optimal confidence region for parame-

rameters 1 and 2

ters1and 2

Confidence level (probability contents desired inside

Number of hypercontour of¢? = x2,. + UP)
Parameters 50% 70% 90% 95% 99%
1 0.46 1.07 2.70 3.84 6.63
2 1.39 2.41 4.61 5.99 9.21
3 2.37 3.67 6.25 7.82 11.36
4 3.36 4.88 7.78 9.49 13.28
5 4.35 6.06 9.24 11.07 15.09
6 5.35 7.23 10.65 12.59 16.81
7 6.35 8.38 12.02 14.07 18.49
8 7.34 9.52 13.36 15.51 20.09
9 8.34 10.66 14.68 16.92 21.67
10 9.34 11.78 15.99 18.31 23.21
11 10.34 12.88 17.29 19.68 24.71
If FCN is — log(likelihood) instead ofy?, all values ofuP

should be divided by 2.

Table 7.1: Table ofiP for multi-parameter confidence regions

Bibliography
[1] L. Lamport. IATeX A Document Preparation Systedddison-Wesley, 1986.

[2] R.Brun. HBOOK users guide (Version 4.1%rogram Library Y250. CERN, 1992.

[3] R.Brun, O.Couet, C.Vandoni, and P.ZanariBAW users guideRrogram Library Q121. CERN,
1991.

[4] F.James. Determining the statistical Significance gbesxnental Results. Technical Report
DD/81/02 and CERN Report 81-03, CERN, 1981.

[5] W.T.Eadie, D.Drijard, F.James, M.Roos, and B.Sadoul8tatistical Methods in Experimental
Physics North-Holland, 1971.

[6] J. Kowalik and M.R. Osbornéviethods for unconstrained optimization problerAsnerican Else-
vier Publishing Co., Inc., New York, 1968.

[7] H.H. Rosenbrock. An automatic method for finding the ¢getior least value of a function, Com-
put. J3, 175 (1960).

[8] R. Hooke and T.A. Jeeves. Direct search solution of nicaean statistical problems. J. Assoc.
Comput. Mach8, 212 (1961).

[9] L.C.W. Dixon. Non-linear optimizationEnglish Universities Press, London, 1972.
[10] J.A. Nelder and R. Mead. A simplex method for functiommiization. Comput. JZ, 308 (1965).

[11] G.W. Stewart. A modification of Davidon’s method to agtdifference approximations of deriva-
tives. J. Assoc. Comput. Mad, 72 (1967).

[12] R. Fletcher and C.M. Reeves. Function minimization byjagate gradients. Comput. 4. 149
(1964).

[13] M.J.D. Powell. An efficient method for finding the minimuof a function of several variables
without calculating derivatives. Comput.?].155 (1964).

[14] L.D. Landau and E.M. LifshitzThe classical theory of fieldfddison-Wesley Publ. Co., Inc.,
Reading, Mass., 1951.

[15] R. Fletcher and M.J.D. Powell. A rapidly converging dest method for minimization. Comput. J.
6, 163 (1963).

[16] W.C. Davidon. Variance algorithm for minimization. @put. J.10, 406 (1968).

[17] M.J.D. Powell.Rank one methods for unconstrained optimization, appgdririnteger and Non-
linear Programming J. Adabie, editor. North-Holland Publ. Co., Amsterdam/@.9

[18] R. Fletcher. A new approach to variable metric algonigh Comput. J13, 317 (1970).

[19] C.G. Broyden. Quasi-Newton methods and their appboatio function minimization. Math. Com-
put.21, 368 (1967).

45

46 BIBLIOGRAPHY

[20] I.M. Gelfand and f.L. Tsetlin. The principle of non-lalcsearch in automatic optimization systems.
Soviet Phys. Dokl6, 192 (1961).

[21] A.A. Goldstein and J.F. Price. On descent from localiman Math. Comput 25, 569 (1971).

[22] R. Fletcher. Methods for the solution of optimizatioroplems. Comput. Phys. Commug). 159
(2972).

[23] M.J.D. Powell. A survey of numerical methods for undoaimed optimization. SIAM Revl2, 79
(2970).

[24] M.J.D. Powell. A method for minimizing a sum of squarésion-linear functions without calcu-
lating derivatives. Comput. J.303 (1965).

[25] J. Greenstadt. On the relative efficiencies of gradmeethods. Math. Compu21, 360 (1967) .

[26] R.W.H. Sargent and B.A. Murtaugh. Computational eigrere with quadratically convergent min-
imization methods. Comput. 13185 (1970).

[27] A.A. Goldstein and J.F. Price. An effective algorithar minimization. Num. Math10, 184 (1967).

[28] P.E. Gill, W. Murray and M.H. WhitePractical Optimization Academic Press, 1981.

Index
batch run, 12

CAL1, 19

CLEar, 19, 31

CONtour, 5,19, 29, 42
correlations, 41
covariance matrix, 38, 41

data driven mode, 10

END, 11, 15, 18, 2020

END RETURN (obsolete), 20
error matrix, 40, 41

errors, 5

EXIT, 11, 15, 18, 2020, 25
external parameter, 1, 2

FCN, 1-5, 8, 9,9, 10-12, 14-24, 26-28, 30, 31,
39, 40, 44

FIX, 4,5,20, 21, 28, 31, 42

Fortran-callable mode, 10

FUTIL, 8, 10

HELP, 12,20, 24
HELP SHOw, 12
HESse, 4, 8, 17,20, 29, 37, 3941

IMProve, 20, 26
input/output units, 11
interactive session, 12
internal parameter, 1, 2
INTRAC, 7, 12, 13

least squares
weighted, 38
likelyhood, 38

metropilis algorithm, 26
MIGrad, 4, 5, 16, 1720, 21, 26-30, 37, 39-41
minimization
multidimensional, 27
MINImize, 20,21, 40
MINOs, 2,5, 6, 8, 12, 17, 2121, 26, 28, 29
MINos, 37, 39-43
MINTIO, 11,11, 21
MINUIT, 11, 32
MNCOMD, 15

a7

MNCONT, 6,17
MNContour, 5, 6, 8, 17-19, 2121
MNEMAT, 17

MNERRS, 17,17

MNEXCM, 15,15, 18, 19
MNINIT, 10, 11,13 18, 21
MNINPU, 18

MNINTR, 18,18

MNPARM, 10,14, 16
MNPARS, 14

MNPOUT, 16
MNSETI, 13, 24
MNSTAT, 16

mode

data driven, 10
Fortran-callable, 10

Monte Carlo, 26
multidimensional minimization, 27

PARameters, 12, 19, 21, 31
parameters

external, 1, 2
internal, 1, 2
number of, 7

RELease, 4,21, 28, 31, 42
REStore, 21, 42

RETurn, 11, 18, 20, 2121
REWIND, 22

SAVe, 21,21
SCAn, 22, 28, 29, 31
SEEKk, 22, 24, 39

SET,

SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET

12, 20
BATch, 13,22
EPSmachine, 8, 22,22, 26, 30
ERRordef, 3, 4, 6, 20, 2122, 24, 29, 37,
38
GRAdient, 22, 23
INPut, 12, 13, 1522
INTeractive, 13,23
LIMits, 23, 31
LINesperpage, 13,23
NOGradient, 23
NOWarnings, 23
OUTputfile, 23

48

SET PAGethrow, 23, 25
SET PARameter, 23, 28, 31
SET PRIntout, 6,23

SET RANdomgenerator, 24
SET STRategy, 3,24, 26
SET TITle, 12,24

SET WARnings, 23,24

SET WIDthpage, 13,24
SET XXXX, 24
SHOw, 12, 20, 23

SHOw CORrelations, 4,24
SHOw CQVariance, 4,24
SHOw EIGenvalues, 4,24
SHOw FCNvalue, 24

SHOw INTeractive, 13
SHOw MINos, 6

SHOw PRInt, 23

SHOw RANdom, 24

SHOw XXXX, 24,24
SIMplex, 21,24, 26, 27, 39
STAndard, 25

standard deviation, 38
STOP, 11, 15, 1825

TOPofpage, 23,25

variable, 7
version, 7

weighted least squares, 38

INDEX

